

Algorithms: Dynamic Programming (Optimal Binary Search Trees) and Graphs

Ola Svensson

EPFL School of Computer and Communication Sciences

Lecture 13, 2.04.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

What is $2^5 + 3 - \sqrt{16}$?

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

What is $2^5 + 3 - \sqrt{16}$?

What is $2^5 + 3 - \sqrt{16}$?

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is $2^5 + 3 - \sqrt{16}$?

Dynamic Programming (DP)

Main idea:

- ▶ Remember calculations already made
- ▶ Saves enormous amounts of computation

Dynamic Programming (DP)

Main idea:

- ▶ Remember calculations already made
- ▶ Saves enormous amounts of computation

Allows to solve many optimization problems

- ▶ Always at least one question in google code jam needs DP

Key elements in designing a DP-algorithm

Optimal substructure

- ▶ Show that a solution to a problem consists of **making a choice**, which leaves one or several subproblems to solve

Key elements in designing a DP-algorithm

Optimal substructure

- ▶ Show that a solution to a problem consists of **making a choice**, which leaves one or several subproblems to solve and the optimal solution solves the subproblems optimally

Key elements in designing a DP-algorithm

Optimal substructure

- ▶ Show that a solution to a problem consists of **making a choice**, which leaves one or several subproblems to solve and the optimal solution solves the subproblems optimally

Overlapping subproblems

- ▶ A naive recursive algorithm may revisit the same (sub)problem over and over.
- ▶ **Top-down with memoization**
Solve recursively but store each result in a table
- ▶ **Bottom-up**
Sort the subproblems and solve the smaller ones first; that way, when solving a subproblem, have already solved the smaller subproblems we need

ROD CUTTING

Rod cutting

Definition

INPUT: A length n and table of prices p_i , for $i = 1, \dots, n$

OUTPUT: The maximum revenue obtainable for rods whose lengths sum up to n , computed as the sum of the prices for the individual rods.

Rod cutting

Definition

INPUT: A length n and table of prices p_i , for $i = 1, \dots, n$

OUTPUT: The maximum revenue obtainable for rods whose lengths sum up to n , computed as the sum of the prices for the individual rods.

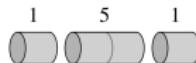
(a)

(b)

(c)

(d)

(e)



(f)

(g)

(h)

Dynamic programming algorithm

Choice:

Dynamic programming algorithm

Choice: where to make the leftmost cut

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure:

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the remaining piece in an optimal way

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the remaining piece in an optimal way

Hence, if we let $r(n)$ be the optimal revenue from a rod of length n , we can express $r(n)$ recursively as follows

$$r(n) = \begin{cases} 0 & \text{if } n = 0 \\ \max_{1 \leq i \leq n} \{p_i + r(n - i)\} & \text{otherwise if } n \geq 1 \end{cases}$$

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the remaining piece in an optimal way

Hence, if we let $r(n)$ be the optimal revenue from a rod of length n , we can express $r(n)$ recursively as follows

$$r(n) = \begin{cases} 0 & \text{if } n = 0 \\ \max_{1 \leq i \leq n} \{p_i + r(n - i)\} & \text{otherwise if } n \geq 1 \end{cases}$$

Optimal substructure: Solve recurrence using top-down with memoization or bottom-up which yields an algorithm that runs in time $\Theta(n^2)$.

Parenthesization	Cost computation	Cost
$A \times ((B \times C) \times D)$	$20 \cdot 1 \cdot 10 + 20 \cdot 10 \cdot 100 + 50 \cdot 20 \cdot 100$	120,200
$(A \times (B \times C)) \times D$	$20 \cdot 1 \cdot 10 + 50 \cdot 20 \cdot 10 + 50 \cdot 10 \cdot 100$	60,200
$(A \times B) \times (C \times D)$	$50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100$	7,000

MATRIX-CHAIN MULTIPLICATION

Matrix-chain multiplication

Definition

INPUT: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$

OUTPUT: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications

Matrix-chain multiplication

Definition

INPUT: A chain $\langle A_1, A_2, \dots, A_n \rangle$ of n matrices, where for $i = 1, 2, \dots, n$, matrix A_i has dimension $p_{i-1} \times p_i$

OUTPUT: A full parenthesization of the product $A_1 A_2 \cdots A_n$ in a way that minimizes the number of scalar multiplications

Example: Optimal parenthesization of $A_{4,3} \times B_{3,5} \times C_{5,2}$ is

$$(A_{4,3} \times (B_{3,5} \times C_{5,2}))$$

and requires $3 \cdot 5 \cdot 2 + 4 \cdot 3 \cdot 2$ multiplications.

Dynamic programming algorithm

Choice:

Dynamic programming algorithm

Choice: where to make the outermost parenthesis

$$(A_1 \cdots A_k)(A_{k+1} \cdots A_n)$$

Dynamic programming algorithm

Choice: where to make the outermost parenthesis

$$(A_1 \cdots A_k)(A_{k+1} \cdots A_n)$$

Optimal substructure:

Dynamic programming algorithm

Choice: where to make the outermost parenthesis

$$(A_1 \cdots A_k)(A_{k+1} \cdots A_n)$$

Optimal substructure: to obtain an optimal solution, we need to parenthesize the two remaining expressions in an optimal way

Dynamic programming algorithm

Choice: where to make the outermost parenthesis

$$(A_1 \cdots A_k)(A_{k+1} \cdots A_n)$$

Optimal substructure: to obtain an optimal solution, we need to parenthesize the two remaining expressions in an optimal way

Hence, if we let $m[i, j]$ be the optimal value for chain multiplication of matrices A_i, \dots, A_j , we can express $m[i, j]$ recursively as follows

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \leq k < j} \{ m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j \} & \text{otherwise if } i < j \end{cases}$$

Dynamic programming algorithm

Choice: where to make the outermost parenthesis

$$(A_1 \cdots A_k)(A_{k+1} \cdots A_n)$$

Optimal substructure: to obtain an optimal solution, we need to parenthesize the two remaining expressions in an optimal way

Hence, if we let $m[i, j]$ be the optimal value for chain multiplication of matrices A_i, \dots, A_j , we can express $m[i, j]$ recursively as follows

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \leq k < j} \{ m[i, k] + m[k + 1, j] + p_{i-1} p_k p_j \} & \text{otherwise if } i < j \end{cases}$$

Overlapping subproblems: Solve recurrence using top-down with memoization or bottom-up which yields an algorithm that runs in time $\Theta(n^3)$.

LONGEST COMMON SUBSEQUENCE

Longest common subsequence

Definition

INPUT: 2 sequences, $X = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_n \rangle$.

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn't have to be consecutive, but it has to be in order

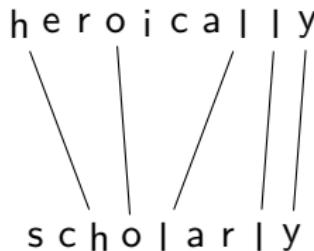
Longest common subsequence

Definition

INPUT: 2 sequences, $X = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_n \rangle$.

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn't have to be consecutive, but it has to be in order

Example:



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

BABDBA

DACBCBA

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

BABDBA
 ▲

DACBCBA
 ▲

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice?

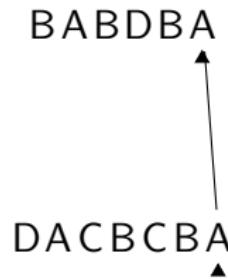
BABDBA
 ▲

DACBCBA
 ▲

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

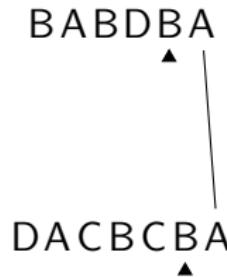
Choice? If the same, pick letter to be in the subsequence



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

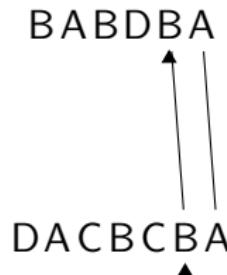
Choice? If the same, pick letter to be in the subsequence



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

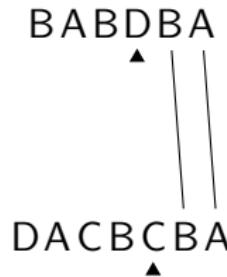
Choice? If the same, pick letter to be in the subsequence



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

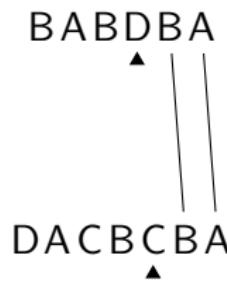


Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step to the left in one of the words

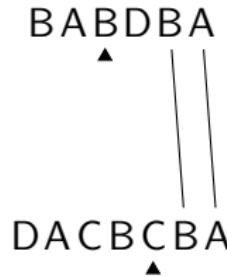


Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step to the left in one of the words

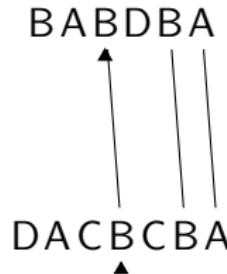


Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step to the left in one of the words

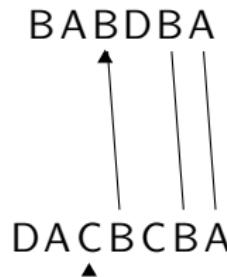


Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step to the left in one of the words

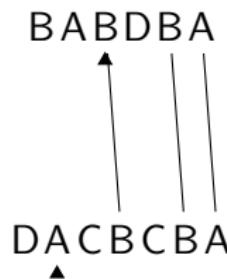


Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step to the left in one of the words

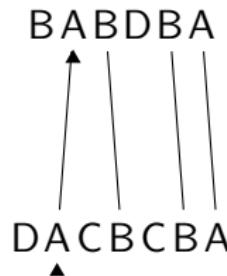


Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step to the left in one of the words

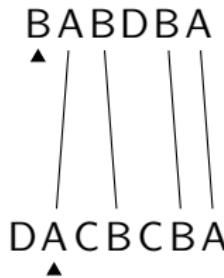


Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step to the left in one of the words



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step to the left in one of the words



Dynamic programming algorithm

Let $X_i = \langle x_1, x_2, \dots, x_i \rangle$ and $Y_j = \langle y_1, y_2, \dots, y_j \rangle$

Choice:

Dynamic programming algorithm

Let $X_i = \langle x_1, x_2, \dots, x_i \rangle$ and $Y_j = \langle y_1, y_2, \dots, y_j \rangle$

Choice:

If $x_i = y_j$ then either

- ▶ OPT “matches” x_i with y_j and remaining OPT is in (X_{i-1}, Y_{j-1}) ;
- ▶ OPT is in (X_{i-1}, Y_j) ; or
- ▶ OPT is in (X_i, Y_{j-1})

Dynamic programming algorithm

Let $X_i = \langle x_1, x_2, \dots, x_i \rangle$ and $Y_j = \langle y_1, y_2, \dots, y_j \rangle$

Choice:

If $x_i = y_j$ then either

- ▶ OPT “matches” x_i with y_j and remaining OPT is in (X_{i-1}, Y_{j-1}) ;
- ▶ OPT is in (X_{i-1}, Y_j) ; or
- ▶ OPT is in (X_i, Y_{j-1})

If $x_i \neq y_j$ then either

- ▶ OPT is in (X_{i-1}, Y_j) ; or
- ▶ OPT is in (X_i, Y_{j-1})

Dynamic programming algorithm

Let $X_i = \langle x_1, x_2, \dots, x_i \rangle$ and $Y_j = \langle y_1, y_2, \dots, y_j \rangle$

Choice:

If $x_i = y_j$ then either

- ▶ OPT “matches” x_i with y_j and remaining OPT is in (X_{i-1}, Y_{j-1}) ;
- ▶ OPT is in (X_{i-1}, Y_j) ; or
- ▶ OPT is in (X_i, Y_{j-1})

If $x_i \neq y_j$ then either

- ▶ OPT is in (X_{i-1}, Y_j) ; or
- ▶ OPT is in (X_i, Y_{j-1})

We proved that we can assume that OPT “matches” x_i with y_j if they are equal so we can simplify the first case

Recursive formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want $c[m, n]$

$$c[i, j] = \begin{cases} \text{length of LCS of } X_i \text{ and } Y_j & \text{if } i = m \text{ and } j = n \\ \max(c[i-1, j], c[i, j-1], c[i-1, j-1] + 1) & \text{otherwise} \end{cases}$$

Recursive formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want $c[m, n]$

$$c[i, j] = \begin{cases} \text{if } i = 0 \text{ or } j = 0 \\ \text{other case} \end{cases}$$

Recursive formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want $c[m, n]$

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ \dots & \dots \end{cases}$$

Recursive formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want $c[m, n]$

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ & \text{if } i, j > 0 \text{ and } x_i = y_j \\ & \text{otherwise} \end{cases}$$

Recursive formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want $c[m, n]$

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i - 1, j - 1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \end{cases}$$

Recursive formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want $c[m, n]$

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i - 1, j - 1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Recursive formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want $c[m, n]$

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i - 1, j - 1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ \max(c[i - 1, j], c[i, j - 1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

Recursive formulation

Define $c[i, j] = \text{length of LCS of } X_i \text{ and } Y_j$. We want $c[m, n]$

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i - 1, j - 1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j \\ \max(c[i - 1, j], c[i, j - 1]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j \end{cases}$$

- ▶ Naive implementation solves same problems many many times
- ▶ Solve with Bottom-Up or Top-Down with Memoization in time $O(m \cdot n)$.

Pseudocode and analysis

```
LCS-LENGTH( $X, Y, m, n$ )
let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
for  $i = 1$  to  $m$ 
     $c[i, 0] = 0$ 
for  $j = 0$  to  $n$ 
     $c[0, j] = 0$ 
for  $i = 1$  to  $m$ 
    for  $j = 1$  to  $n$ 
        if  $x_i == y_j$ 
             $c[i, j] = c[i - 1, j - 1] + 1$ 
             $b[i, j] = “↖”$ 
        else if  $c[i - 1, j] \geq c[i, j - 1]$ 
             $c[i, j] = c[i - 1, j]$ 
             $b[i, j] = “↑”$ 
        else  $c[i, j] = c[i, j - 1]$ 
             $b[i, j] = “←”$ 
return  $c$  and  $b$ 
```

Pseudocode and analysis

```
LCS-LENGTH( $X, Y, m, n$ )
let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
for  $i = 1$  to  $m$ 
     $c[i, 0] = 0$ 
for  $j = 0$  to  $n$ 
     $c[0, j] = 0$ 
for  $i = 1$  to  $m$ 
    for  $j = 1$  to  $n$ 
        if  $x_i == y_j$ 
             $c[i, j] = c[i - 1, j - 1] + 1$ 
             $b[i, j] = “↖”$ 
        else if  $c[i - 1, j] \geq c[i, j - 1]$ 
             $c[i, j] = c[i - 1, j]$ 
             $b[i, j] = “↑”$ 
        else  $c[i, j] = c[i, j - 1]$ 
             $b[i, j] = “←”$ 
return  $c$  and  $b$ 
```

- ▶ Time dominated by instructions inside the two nested loops which execute $m \cdot n$ times

Pseudocode and analysis

```
LCS-LENGTH( $X, Y, m, n$ )
let  $b[1..m, 1..n]$  and  $c[0..m, 0..n]$  be new tables
for  $i = 1$  to  $m$ 
     $c[i, 0] = 0$ 
for  $j = 0$  to  $n$ 
     $c[0, j] = 0$ 
for  $i = 1$  to  $m$ 
    for  $j = 1$  to  $n$ 
        if  $x_i == y_j$ 
             $c[i, j] = c[i - 1, j - 1] + 1$ 
             $b[i, j] = “↖”$ 
        else if  $c[i - 1, j] \geq c[i, j - 1]$ 
             $c[i, j] = c[i - 1, j]$ 
             $b[i, j] = “↑”$ 
        else  $c[i, j] = c[i, j - 1]$ 
             $b[i, j] = “←”$ 
return  $c$  and  $b$ 
```

- ▶ Time dominated by instructions inside the two nested loops which execute $m \cdot n$ times
- ▶ Total time is $\Theta(m \cdot n)$.

OPTIMAL BINARY SEARCH TREES

Searching on Facebook

More popular than

Optimal binary search trees

- ▶ Given sequence $K = \langle k_1, k_2, \dots, k_n \rangle$ of n distinct keys, sorted $(k_1 < k_2 < \dots < k_n)$.
- ▶ Want to build a binary search tree from the keys

Optimal binary search trees

- ▶ Given sequence $K = \langle k_1, k_2, \dots, k_n \rangle$ of n distinct keys, sorted ($k_1 < k_2 < \dots < k_n$).
- ▶ Want to build a binary search tree from the keys
- ▶ For k_i , have probability p_i that a search is for k_i
- ▶ Want BST with minimum expected search cost

Optimal binary search trees

- ▶ Given sequence $K = \langle k_1, k_2, \dots, k_n \rangle$ of n distinct keys, sorted ($k_1 < k_2 < \dots < k_n$).
- ▶ Want to build a binary search tree from the keys
- ▶ For k_i , have probability p_i that a search is for k_i
- ▶ Want BST with minimum expected search cost
- ▶ Actual cost = # of items examined

For key k_i , cost = $\text{depth}_T(k_i) + 1$, where $\text{depth}_T(k_i)$ denotes the depth of k_i in BST T

Optimal binary search trees

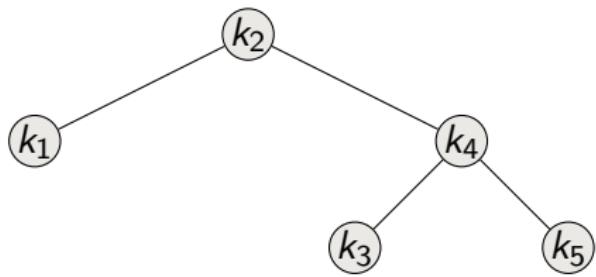
- ▶ Given sequence $K = \langle k_1, k_2, \dots, k_n \rangle$ of n distinct keys, sorted ($k_1 < k_2 < \dots < k_n$).
- ▶ Want to build a binary search tree from the keys
- ▶ For k_i , have probability p_i that a search is for k_i
- ▶ Want BST with minimum expected search cost
- ▶ Actual cost = # of items examined

For key k_i , cost = $\text{depth}_T(k_i) + 1$, where $\text{depth}_T(k_i)$ denotes the depth of k_i in BST T

$$\begin{aligned}\mathbb{E}[\text{search cost in } T] &= \sum_{i=1}^n (\text{depth}_T(k_i) + 1)p_i \\ &= 1 + \sum_{i=1}^n \text{depth}_T(k_i) \cdot p_i\end{aligned}$$

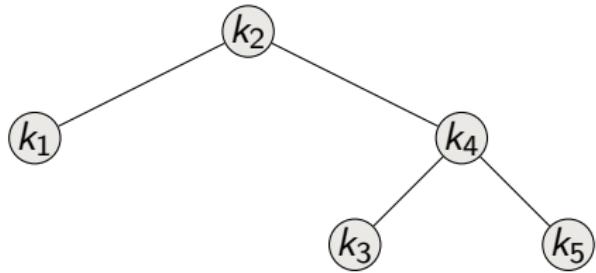
Example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3



Example

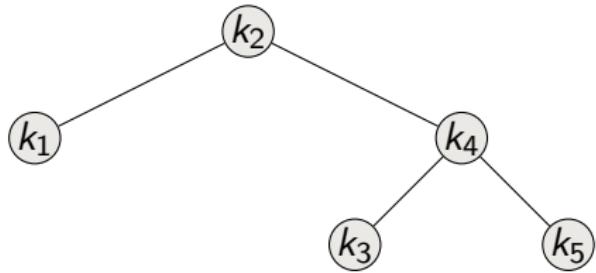
i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3



i	$\text{depth}_T(k_i)$	$\text{depth}_T(k_i) \cdot p_i$
1	1	.25
2	0	0
3	2	.1
4	1	.2
5	2	.6
		1.15

Example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3

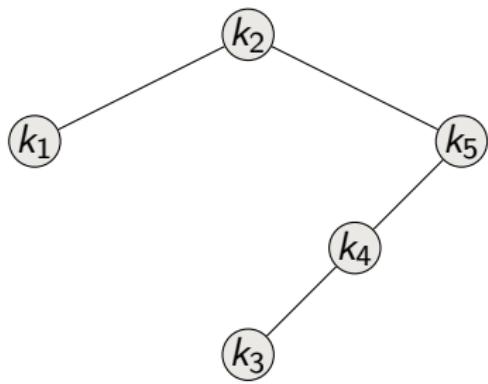


i	$\text{depth}_T(k_i)$	$\text{depth}_T(k_i) \cdot p_i$
1	1	.25
2	0	0
3	2	.1
4	1	.2
5	2	.6
		1.15

Therefore, $\mathbb{E}[\text{search cost}] = 2.15$

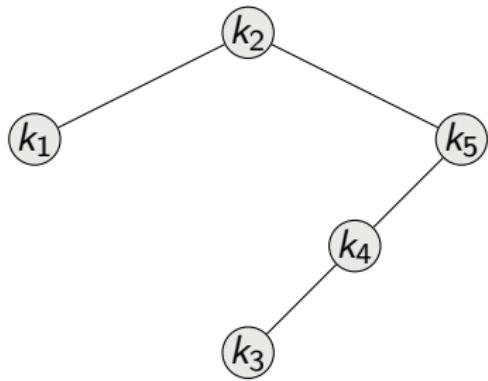
Example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3



Example

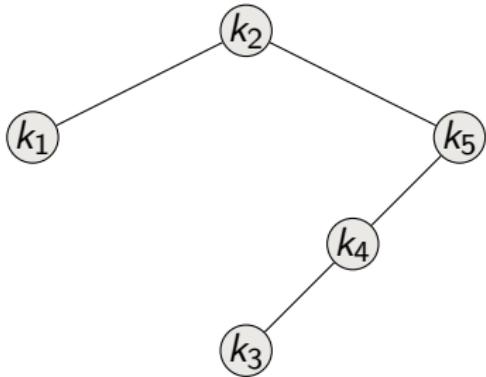
i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3



i	$\text{depth}_T(k_i)$	$\text{depth}_T(k_i) \cdot p_i$
1	1	.25
2	0	0
3	3	.15
4	2	.4
5	1	.3
		1.10

Example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3



i	$\text{depth}_T(k_i)$	$\text{depth}_T(k_i) \cdot p_i$
1	1	.25
2	0	0
3	3	.15
4	2	.4
5	1	.3
		1.10

Therefore, $\mathbb{E}[\text{search cost}] = 2.10$, which turns out to be optimal

Observations

- ▶ Optimal BST might not have smallest height
- ▶ Optimal BST might not have highest-probability key at root

Observations

- ▶ Optimal BST might not have smallest height
- ▶ Optimal BST might not have highest-probability key at root

Build by exhaustive checking?

- ▶ Construct each n -node BST
- ▶ For each put in keys
- ▶ Then compute expected search cost

Observations

- ▶ Optimal BST might not have smallest height
- ▶ Optimal BST might not have highest-probability key at root

Build by exhaustive checking?

- ▶ Construct each n -node BST
- ▶ For each put in keys
- ▶ Then compute expected search cost
- ▶ But there are exponentially many trees

Observations

- ▶ Optimal BST might not have smallest height
- ▶ Optimal BST might not have highest-probability key at root

Build by exhaustive checking?

- ▶ Construct each n -node BST
- ▶ For each put in keys
- ▶ Then compute expected search cost
- ▶ But there are exponentially many trees

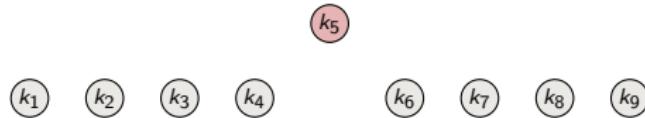
DP comes to the rescue :)

Optimal substructure

A binary search tree can be built by first picking the root and then building the subtrees recursively

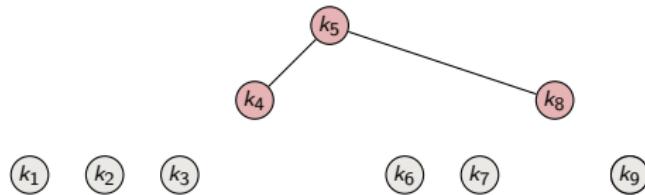
Optimal substructure

A binary search tree can be built by first picking the root and then building the subtrees recursively



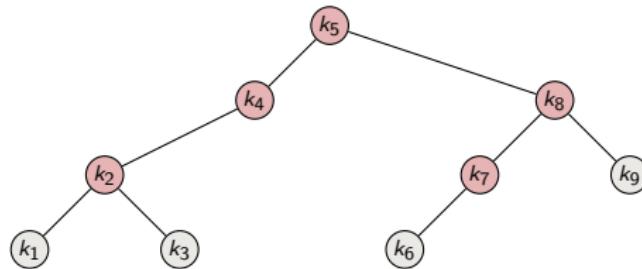
Optimal substructure

A binary search tree can be built by first picking the root and then building the subtrees recursively



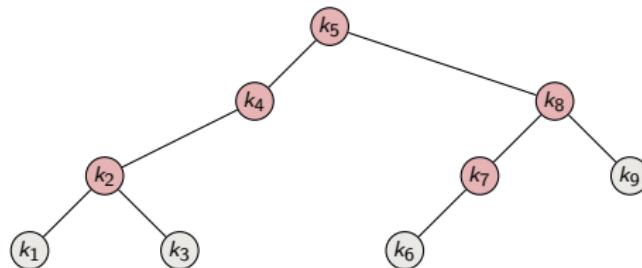
Optimal substructure

A binary search tree can be built by first picking the root and then building the subtrees recursively



Optimal substructure

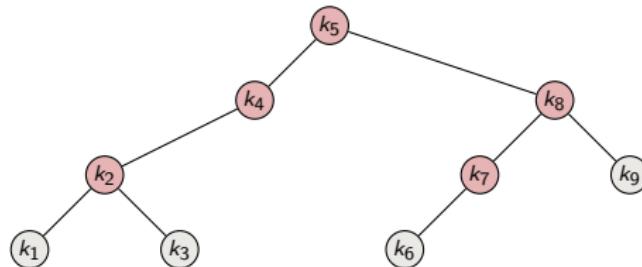
A binary search tree can be built by first picking the root and then building the subtrees recursively



$$\mathbb{E}[\text{search cost}] = p_5 + 2p_4 + 3p_2 + 4p_1 + 4p_3 + 2p_8 + 3p_7 + 3p_9 + 4p_6$$

Optimal substructure

A binary search tree can be built by first picking the root and then building the subtrees recursively



$$\mathbb{E}[\text{search cost}] = p_5$$

$$+ p_1 + p_2 + p_3 + p_4 + \mathbb{E}[\text{search cost left subtree}]$$

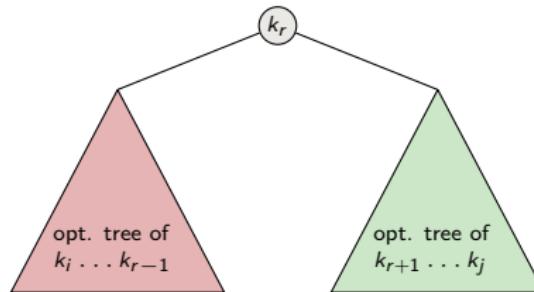
$$+ p_6 + p_7 + p_8 + p_9 + \mathbb{E}[\text{search cost right subtree}]$$

Optimal substructure

A binary search tree can be built by first picking the root and then building the subtrees recursively

After picking root solution to subtrees must be optimal

Build tree of nodes $k_i < k_{i+1} < \dots < k_{j-1} < k_j$ by selecting best root r :



$$\mathbb{E}[\text{search cost}] = p_r$$

$$+ p_i + \dots + p_{r-1} + \mathbb{E}[\text{search cost left subtree}]$$

$$+ p_{r+1} + \dots + p_j + \mathbb{E}[\text{search cost right subtree}]$$

Recursive formulation

- ▶ Let $e[i, j] =$ expected search cost of optimal BST of $k_i \dots k_j$

Recursive formulation

- ▶ Let $e[i, j] =$ expected search cost of optimal BST of $k_i \dots k_j$

$$e[i, j] = \left\{ \begin{array}{l} \dots \end{array} \right.$$

Recursive formulation

- ▶ Let $e[i, j] =$ expected search cost of optimal BST of $k_i \dots k_j$

$$e[i, j] = \begin{cases} \dots & \text{if } i = j + 1 \end{cases}$$

Recursive formulation

- ▶ Let $e[i, j] =$ expected search cost of optimal BST of $k_i \dots k_j$

$$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \dots & \dots \end{cases}$$

Recursive formulation

- ▶ Let $e[i, j] =$ expected search cost of optimal BST of $k_i \dots k_j$

$$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ & \text{if } i \leq j \end{cases}$$

Recursive formulation

- Let $e[i, j] =$ expected search cost of optimal BST of $k_i \dots k_j$

$$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell\} & \text{if } i \leq j \end{cases}$$

Recursive formulation

- Let $e[i, j] =$ expected search cost of optimal BST of $k_i \dots k_j$

$$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell\} & \text{if } i \leq j \end{cases}$$

- Solve using bottom-up or top-down with memoization

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1						
2						
3						
4						
5						
6						

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0					
2		0				
3			0			
4				0		
5					0	
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25				
2		0				
3			0			
4				0		
5					0	
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25				
2		0	.2			
3			0			
4				0		
5					0	
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25				
2		0	.2			
3			0	.05		
4				0		
5					0	
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25				
2		0	.2			
3			0	.05		
4				0	.2	
5					0	
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25				
2		0	.2			
3			0	.05		
4				0	.2	
5					0	.3
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25	.65			
2		0	.2			
3			0	.05		
4				0	.2	
5					0	.3
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25	.65			
2		0	.2	.3		
3			0	.05		
4				0	.2	
5					0	.3
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25	.65			
2		0	.2	.3		
3			0	.05	.3	
4				0	.2	
5					0	.3
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25	.65			
2		0	.2	.3		
3			0	.05	.3	
4				0	.2	.7
5					0	.3
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3

$$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$$

e	0	1	2	3	4	5
1	0	.25	.65	.8		
2		0	.2	.3		
3			0	.05	.3	
4				0	.2	.7
5					0	.3
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3

$$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$$

e	0	1	2	3	4	5
1	0	.25	.65	.8		
2		0	.2	.3	.75	
3			0	.05	.3	
4				0	.2	.7
5					0	.3
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25	.65	.8		
2		0	.2	.3	.75	
3			0	.05	.3	.85
4				0	.2	.7
5					0	.3
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25	.65	.8	1.25	
2		0	.2	.3	.75	
3			0	.05	.3	.85
4				0	.2	.7
5					0	.3
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25	.65	.8	1.25	
2		0	.2	.3	.75	1.35
3			0	.05	.3	.85
4				0	.2	.7
5					0	.3
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3
$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$					

e	0	1	2	3	4	5
1	0	.25	.65	.8	1.25	2.1
2		0	.2	.3	.75	1.35
3			0	.05	.3	.85
4				0	.2	.7
5					0	.3
6						0

Bottom-up example

i	1	2	3	4	5
p_i	.25	.2	.05	.2	.3

$$e[i, j] = \begin{cases} 0 & \text{if } i = j + 1 \\ \min_{i \leq r \leq j} \{ e[i, r - 1] + e[r + 1, j] + \sum_{\ell=i}^j p_\ell \} & \text{if } i \leq j \end{cases}$$

e	0	1	2	3	4	5
1	0	.25	.65	.8	1.25	2.1
2		0	.2	.3	.75	1.35
3			0	.05	.3	.85
4				0	.2	.7
5					0	.3
6						0

Optimal BST has expected search cost 2.1
Can save decisions to reconstruct tree

Pseudocode of bottom-up

```
OPTIMAL-BST( $p, q, n$ )
let  $e[1..n + 1, 0..n]$ ,  $w[1..n + 1, 0..n]$ , and  $root[1..n, 1..n]$  be new tables
for  $i = 1$  to  $n + 1$ 
     $e[i, i - 1] = 0$ 
     $w[i, i - 1] = 0$ 
for  $l = 1$  to  $n$ 
    for  $i = 1$  to  $n - l + 1$ 
         $j = i + l - 1$ 
         $e[i, j] = \infty$ 
         $w[i, j] = w[i, j - 1] + p_j$ 
        for  $r = i$  to  $j$ 
             $t = e[i, r - 1] + e[r + 1, j] + w[i, j]$ 
            if  $t < e[i, j]$ 
                 $e[i, j] = t$ 
                 $root[i, j] = r$ 
return  $e$  and  $root$ 
```

$e[i, j]$ records the expected search cost of optimal BST of k_i, \dots, k_j

$r[i, j]$ records the best root in optimal BST of k_i, \dots, k_j

$w[i, j]$ records $\sum_{\ell=i}^j p_\ell$

Runtime Analysis

OPTIMAL-BST(p, q, n)

let $e[1..n + 1, 0..n]$, $w[1..n + 1, 0..n]$, and $root[1..n, 1..n]$ be new tables

for $i = 1$ **to** $n + 1$

$e[i, i - 1] = 0$

$w[i, i - 1] = 0$

for $l = 1$ **to** n

for $i = 1$ **to** $n - l + 1$

$j = i + l - 1$

$e[i, j] = \infty$

$w[i, j] = w[i, j - 1] + p_j$

for $r = i$ **to** j

$t = e[i, r - 1] + e[r + 1, j] + w[i, j]$

if $t < e[i, j]$

$e[i, j] = t$

$root[i, j] = r$

return e and $root$

Runtime Analysis

OPTIMAL-BST(p, q, n)

```
let  $e[1..n + 1, 0..n]$ ,  $w[1..n + 1, 0..n]$ , and  $root[1..n, 1..n]$  be new tables
for  $i = 1$  to  $n + 1$ 
     $e[i, i - 1] = 0$ 
     $w[i, i - 1] = 0$ 
for  $l = 1$  to  $n$ 
    for  $i = 1$  to  $n - l + 1$ 
         $j = i + l - 1$ 
         $e[i, j] = \infty$ 
         $w[i, j] = w[i, j - 1] + p_j$ 
        for  $r = i$  to  $j$ 
             $t = e[i, r - 1] + e[r + 1, j] + w[i, j]$ 
            if  $t < e[i, j]$ 
                 $e[i, j] = t$ 
                 $root[i, j] = r$ 
return  $e$  and  $root$ 
```

- ▶ Runtime dominated by three nested loops: total time is $\Theta(n^3)$

Runtime Analysis

OPTIMAL-BST(p, q, n)

```
let  $e[1..n + 1, 0..n]$ ,  $w[1..n + 1, 0..n]$ , and  $root[1..n, 1..n]$  be new tables
for  $i = 1$  to  $n + 1$ 
     $e[i, i - 1] = 0$ 
     $w[i, i - 1] = 0$ 
for  $l = 1$  to  $n$ 
    for  $i = 1$  to  $n - l + 1$ 
         $j = i + l - 1$ 
         $e[i, j] = \infty$ 
         $w[i, j] = w[i, j - 1] + p_j$ 
        for  $r = i$  to  $j$ 
             $t = e[i, r - 1] + e[r + 1, j] + w[i, j]$ 
            if  $t < e[i, j]$ 
                 $e[i, j] = t$ 
                 $root[i, j] = r$ 
return  $e$  and  $root$ 
```

- ▶ Runtime dominated by three nested loops: total time is $\Theta(n^3)$
- ▶ Alternatively, $\Theta(n^2)$ cells to fill in

Runtime Analysis

OPTIMAL-BST(p, q, n)

```
let  $e[1..n + 1, 0..n]$ ,  $w[1..n + 1, 0..n]$ , and  $root[1..n, 1..n]$  be new tables
for  $i = 1$  to  $n + 1$ 
     $e[i, i - 1] = 0$ 
     $w[i, i - 1] = 0$ 
for  $l = 1$  to  $n$ 
    for  $i = 1$  to  $n - l + 1$ 
         $j = i + l - 1$ 
         $e[i, j] = \infty$ 
         $w[i, j] = w[i, j - 1] + p_j$ 
        for  $r = i$  to  $j$ 
             $t = e[i, r - 1] + e[r + 1, j] + w[i, j]$ 
            if  $t < e[i, j]$ 
                 $e[i, j] = t$ 
                 $root[i, j] = r$ 
return  $e$  and  $root$ 
```

- ▶ Runtime dominated by three nested loops: total time is $\Theta(n^3)$
- ▶ Alternatively, $\Theta(n^2)$ cells to fill in
 - Most cells take $\Theta(n)$ time to fill in

Runtime Analysis

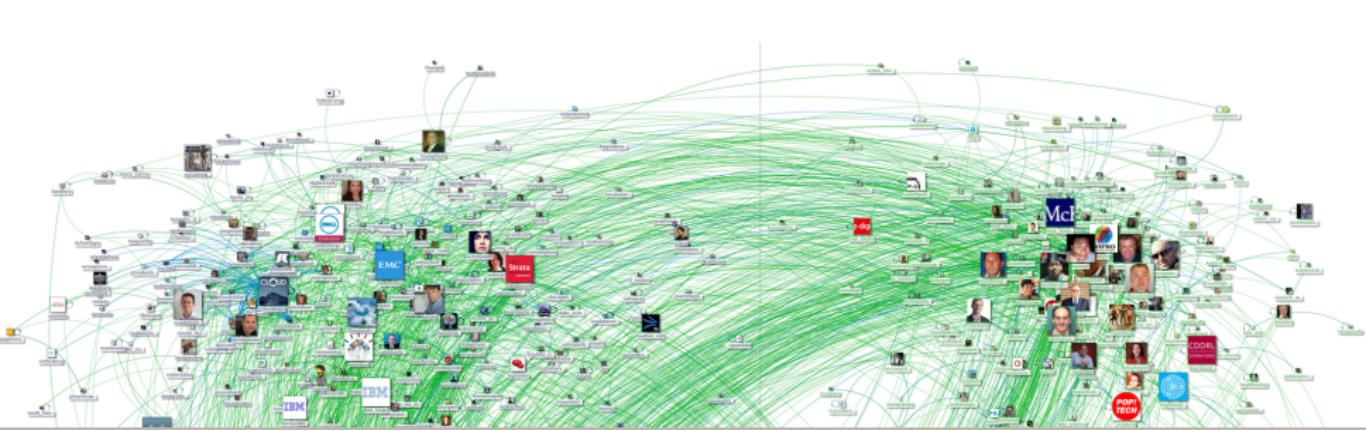
OPTIMAL-BST(p, q, n)

```
let  $e[1..n + 1, 0..n]$ ,  $w[1..n + 1, 0..n]$ , and  $root[1..n, 1..n]$  be new tables
for  $i = 1$  to  $n + 1$ 
     $e[i, i - 1] = 0$ 
     $w[i, i - 1] = 0$ 
for  $l = 1$  to  $n$ 
    for  $i = 1$  to  $n - l + 1$ 
         $j = i + l - 1$ 
         $e[i, j] = \infty$ 
         $w[i, j] = w[i, j - 1] + p_j$ 
        for  $r = i$  to  $j$ 
             $t = e[i, r - 1] + e[r + 1, j] + w[i, j]$ 
            if  $t < e[i, j]$ 
                 $e[i, j] = t$ 
                 $root[i, j] = r$ 
return  $e$  and  $root$ 
```

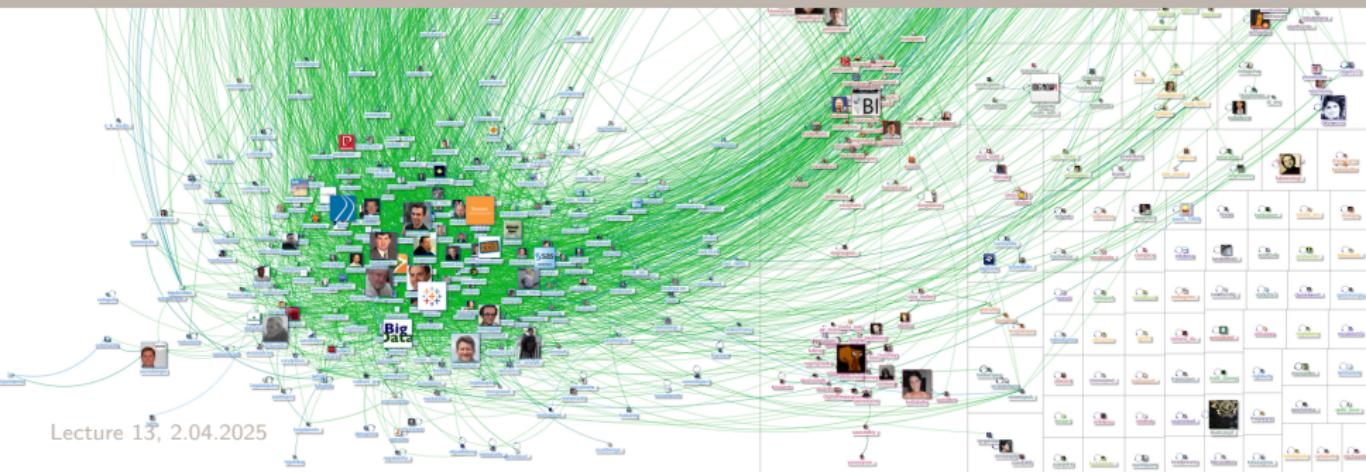
- ▶ Runtime dominated by three nested loops: total time is $\Theta(n^3)$
- ▶ Alternatively, $\Theta(n^2)$ cells to fill in
 - Most cells take $\Theta(n)$ time to fill in
 - Hence, total time is $\Theta(n^3)$

Summary of Dynamic Programming

- ▶ Identify choices and optimal substructure
- ▶ Write optimal solution recursively as a function of smaller subproblems
- ▶ Use top-down with memoization or bottom-up to solve the recursion efficiently (without repeatedly solving the same subproblems)
- ▶ Do a lot of exercises!



GRAPHS



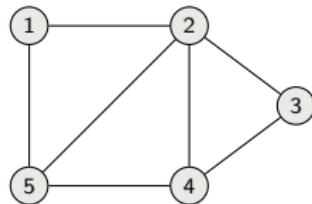
Graphs

A graph $G = (V, E)$ consists of

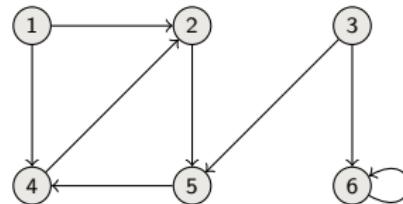
- ▶ a vertex set V
- ▶ an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

Undirected Graph



Directed Graph



Graphs

A graph $G = (V, E)$ consists of

- ▶ a vertex set V
- ▶ an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

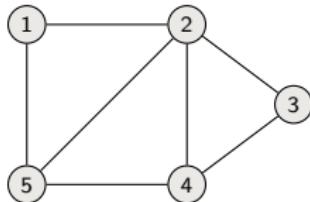


How to represent a graph in the computer?

Adjacency Lists

- ▶ Array Adj of $|V|$ lists, one per vertex

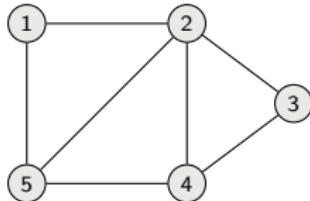
Undirected Graph



Adjacency Lists

- ▶ Array Adj of $|V|$ lists, one per vertex
- ▶ Vertex u 's list has all vertices v such that $(u, v) \in E$ (works for both undirected and directed graphs)

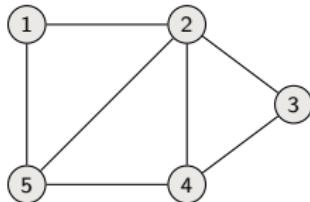
Undirected Graph



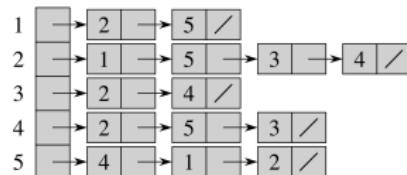
Adjacency Lists

- ▶ Array Adj of $|V|$ lists, one per vertex
- ▶ Vertex u 's list has all vertices v such that $(u, v) \in E$ (works for both undirected and directed graphs)

Undirected Graph



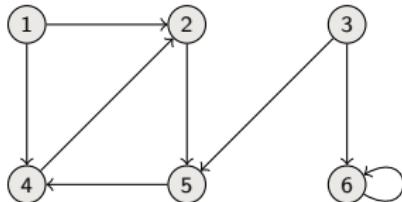
Adjacency list Adj



Adjacency Lists

- ▶ Array Adj of $|V|$ lists, one per vertex
- ▶ Vertex u 's list has all vertices v such that $(u, v) \in E$ (works for both undirected and directed graphs)

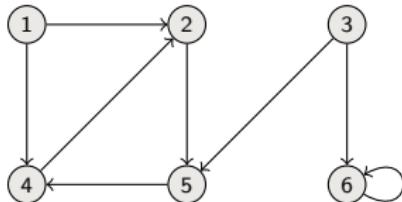
Directed Graph



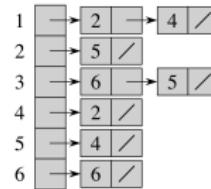
Adjacency Lists

- ▶ Array Adj of $|V|$ lists, one per vertex
- ▶ Vertex u 's list has all vertices v such that $(u, v) \in E$ (works for both undirected and directed graphs)

Directed Graph

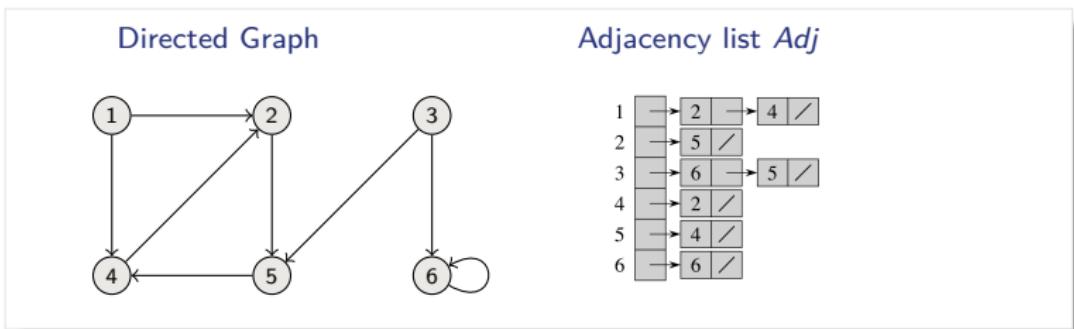


Adjacency list Adj



Adjacency Lists

- ▶ Array Adj of $|V|$ lists, one per vertex
- ▶ Vertex u 's list has all vertices v such that $(u, v) \in E$ (works for both undirected and directed graphs)
- ▶ In pseudocode, we will denote the array as attribute $G.Adj$, so we will see notation such as $G.Adj[u]$.

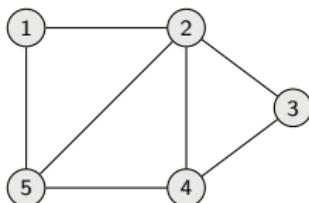


Adjacency matrix

- A $|V| \times |V|$ matrix $A = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Undirected Graph

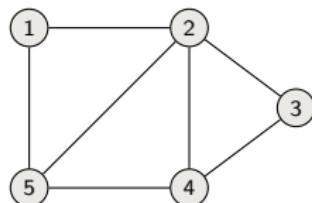


Adjacency matrix

- A $|V| \times |V|$ matrix $A = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Undirected Graph



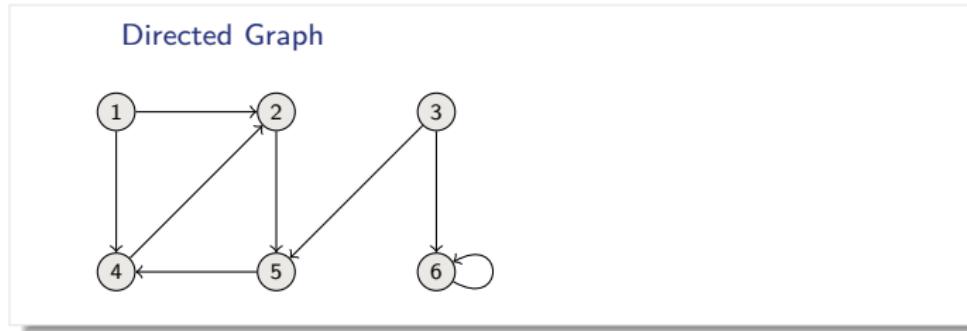
Adjacency matrix

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Adjacency matrix

- A $|V| \times |V|$ matrix $A = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

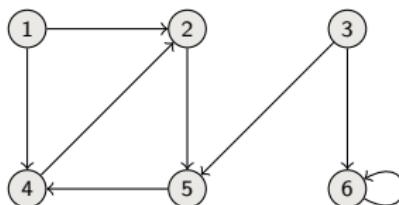


Adjacency matrix

- A $|V| \times |V|$ matrix $A = (a_{ij})$ where

$$a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Directed Graph



Adjacency matrix

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Comparison of adjacency list and adjacency matrix

Adjacency list

Adjacency matrix

Space

Space

Comparison of adjacency list and adjacency matrix

Adjacency list

Adjacency matrix

Space = $\Theta(V + E)$

Space

Comparison of adjacency list and adjacency matrix

Adjacency list

Adjacency matrix

Space = $\Theta(V + E)$

Space = $\Theta(V^2)$

Comparison of adjacency list and adjacency matrix

Adjacency list

Space = $\Theta(V + E)$

Time: to list all vertices adjacent to u :

Adjacency matrix

Space = $\Theta(V^2)$

Time: to list all vertices adjacent to u :

Comparison of adjacency list and adjacency matrix

Adjacency list

Space = $\Theta(V + E)$

Time: to list all vertices adjacent to u : $\Theta(\text{degree}(u))$

Adjacency matrix

Space = $\Theta(V^2)$

Time: to list all vertices adjacent to u :

Comparison of adjacency list and adjacency matrix

Adjacency list

$$\text{Space} = \Theta(V + E)$$

Time: to list all vertices adjacent to u : $\Theta(\text{degree}(u))$

Adjacency matrix

$$\text{Space} = \Theta(V^2)$$

Time: to list all vertices adjacent to u : $\Theta(V)$

Comparison of adjacency list and adjacency matrix

Adjacency list

Space = $\Theta(V + E)$

Time: to list all vertices adjacent to u : $\Theta(\text{degree}(u))$

Time: to determine whether $(u, v) \in E$:

Adjacency matrix

Space = $\Theta(V^2)$

Time: to list all vertices adjacent to u : $\Theta(V)$

Time: to determine whether $(u, v) \in E$:

Comparison of adjacency list and adjacency matrix

Adjacency list

Space = $\Theta(V + E)$

Time: to list all vertices adjacent to u : $\Theta(\text{degree}(u))$

Time: to determine whether $(u, v) \in E$: $O(\text{degree}(u))$

Adjacency matrix

Space = $\Theta(V^2)$

Time: to list all vertices adjacent to u : $\Theta(V)$

Time: to determine whether $(u, v) \in E$:

Comparison of adjacency list and adjacency matrix

Adjacency list

Space = $\Theta(V + E)$

Time: to list all vertices adjacent to u : $\Theta(\text{degree}(u))$

Time: to determine whether $(u, v) \in E$: $O(\text{degree}(u))$

Adjacency matrix

Space = $\Theta(V^2)$

Time: to list all vertices adjacent to u : $\Theta(V)$

Time: to determine whether $(u, v) \in E$: $\Theta(1)$

Comparison of adjacency list and adjacency matrix

Adjacency list

Space = $\Theta(V + E)$

Time: to list all vertices adjacent to u : $\Theta(\text{degree}(u))$

Time: to determine whether $(u, v) \in E$: $O(\text{degree}(u))$

Adjacency matrix

Space = $\Theta(V^2)$

Time: to list all vertices adjacent to u : $\Theta(V)$

Time: to determine whether $(u, v) \in E$: $\Theta(1)$

We can extend both representations to include other attributes such as edge weights

TRAVERSING/SEARCHING A GRAPH

Breadth-First Search

Definition

INPUT: Graph $G = (V, E)$, either directed or undirected and source vertex $s \in V$

OUTPUT: $v.d =$ distance (smallest number of edges) from s to v , for all $v \in V$

Breadth-First Search

Definition

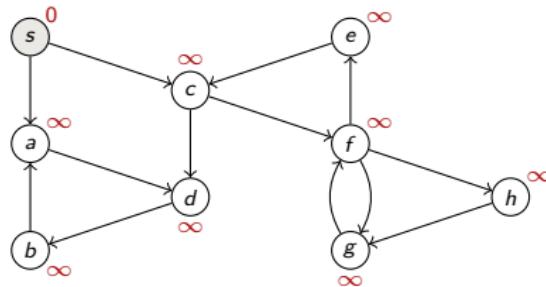
INPUT: Graph $G = (V, E)$, either directed or undirected and source vertex $s \in V$

OUTPUT: $v.d =$ distance (smallest number of edges) from s to v , for all $v \in V$

Idea:

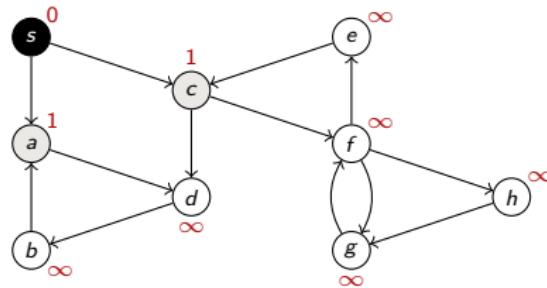
- ▶ Send a wave out from s
- ▶ First hits all vertices 1 edge from s
- ▶ From there, hits all vertices 2 edges from s ...

Example of Breadth-first search

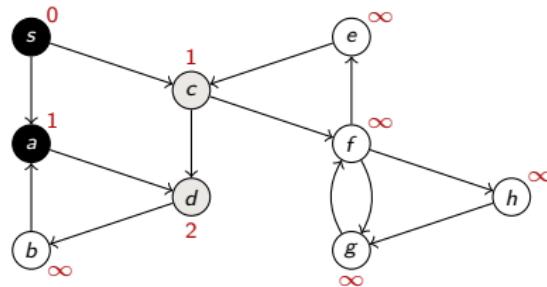


Queue $Q = s$

Example of Breadth-first search

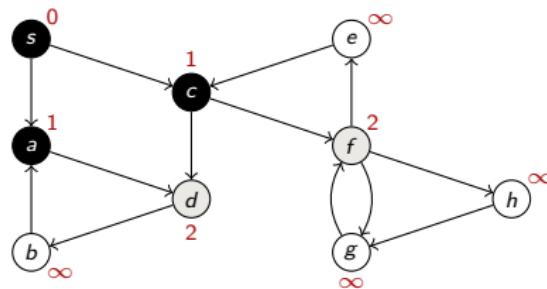


Example of Breadth-first search

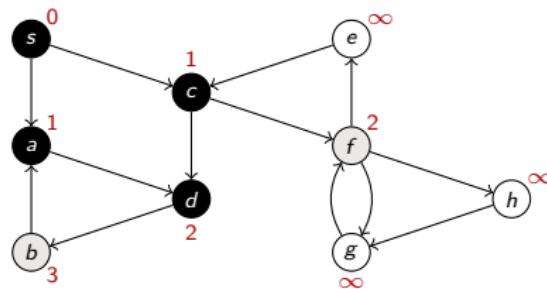


Queue $Q = c, d$

Example of Breadth-first search



Example of Breadth-first search

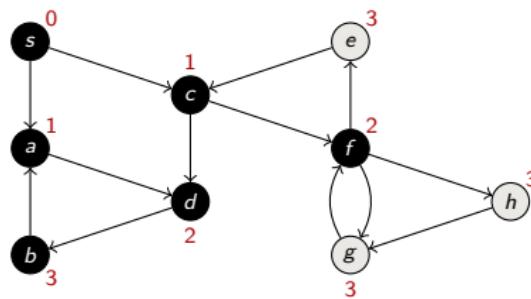


Queue $Q = f, b$

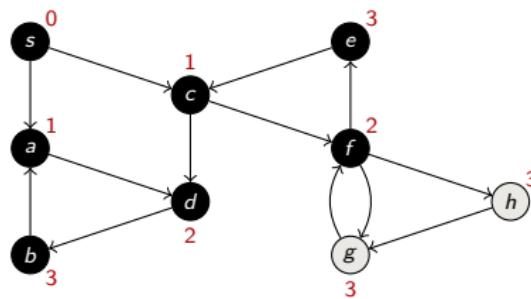
Example of Breadth-first search



Example of Breadth-first search

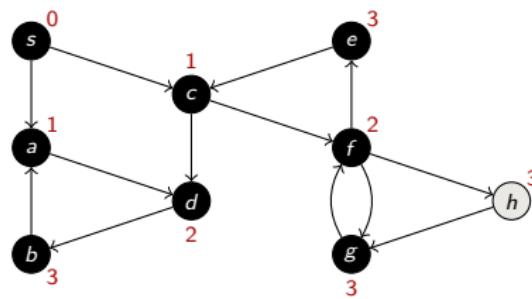


Example of Breadth-first search



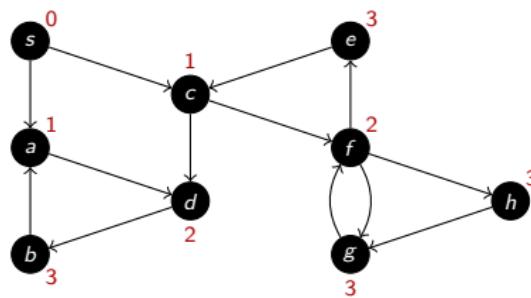
Queue $Q = g, h$

Example of Breadth-first search



Queue Q = h

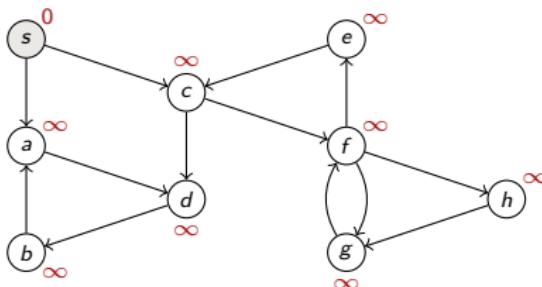
Example of Breadth-first search



Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```

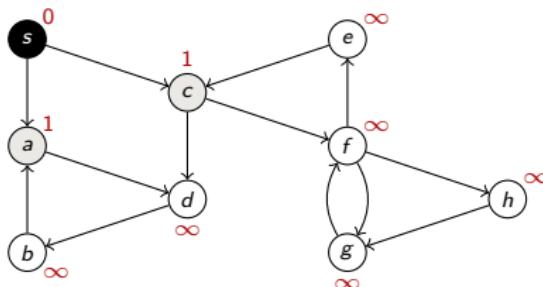


Queue $Q = s$

Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```

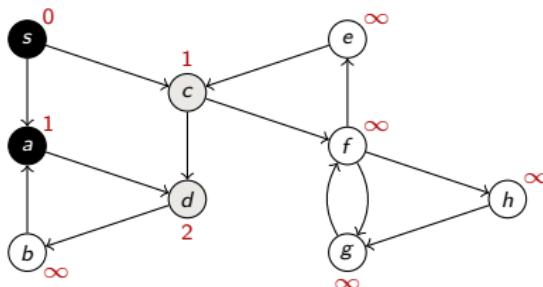


Queue $Q = a, c$

Pseudocode of Breadth-first search

BFS(V, E, s)

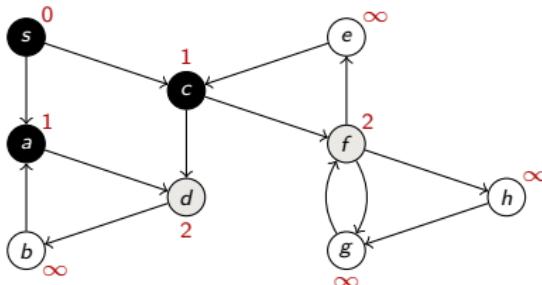
```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```



Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```



Queue $Q = d, f$

Pseudocode of Breadth-first search

BFS(V, E, s)

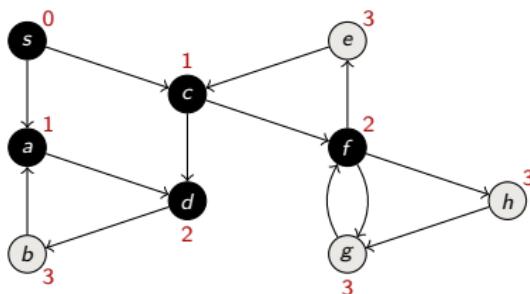
```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```



Pseudocode of Breadth-first search

BFS(V, E, s)

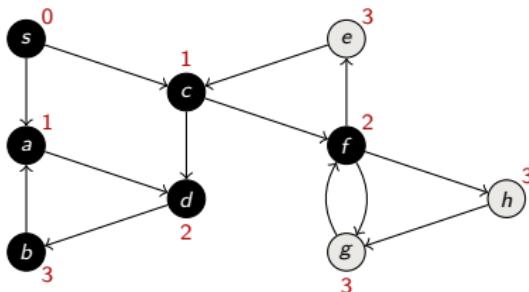
```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```



Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```

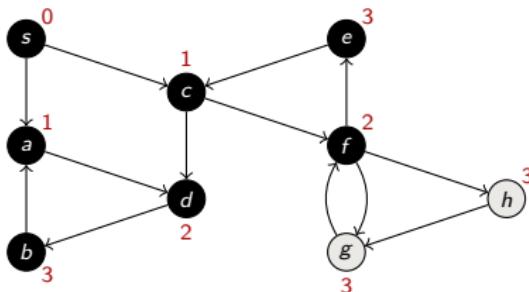


Queue $Q = e, g, h$

Pseudocode of Breadth-first search

BFS(V, E, s)

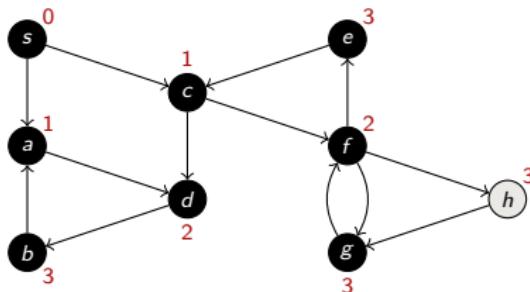
```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```



Pseudocode of Breadth-first search

BFS(V, E, s)

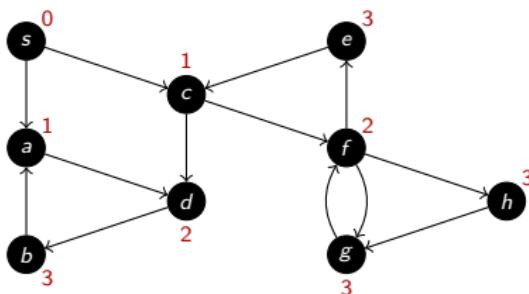
```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```



Pseudocode of Breadth-first search

BFS(V, E, s)

```
for each  $u \in V - \{s\}$ 
   $u.d = \infty$ 
 $s.d = 0$ 
 $Q = \emptyset$ 
ENQUEUE( $Q, s$ )
while  $Q \neq \emptyset$ 
   $u = \text{DEQUEUE}(Q)$ 
  for each  $v \in G.\text{Adj}[u]$ 
    if  $v.d == \infty$ 
       $v.d = u.d + 1$ 
      ENQUEUE( $Q, v$ )
```



Queue $Q = \text{nil}$

Analysis

Informal Idea of correctness (formal proof in book):

Analysis

Informal Idea of correctness (formal proof in book):

- ▶ Suppose that $v.d$ is greater than the shortest distance from s to v
- ▶ but since algorithm repeatedly considers the vertices closest to the root (by adding them to the queue) this cannot happen

Analysis

Informal Idea of correctness (formal proof in book):

- ▶ Suppose that $v.d$ is greater than the shortest distance from s to v
- ▶ but since algorithm repeatedly considers the vertices closest to the root (by adding them to the queue) this cannot happen

Runtime analysis:

Analysis

Informal Idea of correctness (formal proof in book):

- ▶ Suppose that $v.d$ is greater than the shortest distance from s to v
- ▶ but since algorithm repeatedly considers the vertices closest to the root (by adding them to the queue) this cannot happen

Runtime analysis: $O(V+E)$

Analysis

Informal Idea of correctness (formal proof in book):

- ▶ Suppose that $v.d$ is greater than the shortest distance from s to v
- ▶ but since algorithm repeatedly considers the vertices closest to the root (by adding them to the queue) this cannot happen

Runtime analysis: $O(V+E)$

- ▶ $O(V)$ because each vertex enqueued at most once

Analysis

Informal Idea of correctness (formal proof in book):

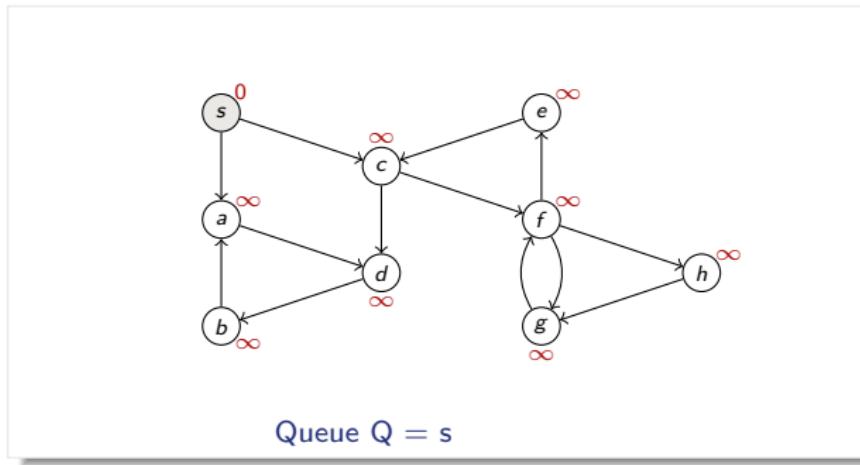
- ▶ Suppose that $v.d$ is greater than the shortest distance from s to v
- ▶ but since algorithm repeatedly considers the vertices closest to the root (by adding them to the queue) this cannot happen

Runtime analysis: $O(V+E)$

- ▶ $O(V)$ because each vertex enqueued at most once
- ▶ $O(E)$ because every vertex dequeued at most once and we examine (u, v) only when u is dequeued. Therefore, every edge examined at most once if directed and at most twice if undirected

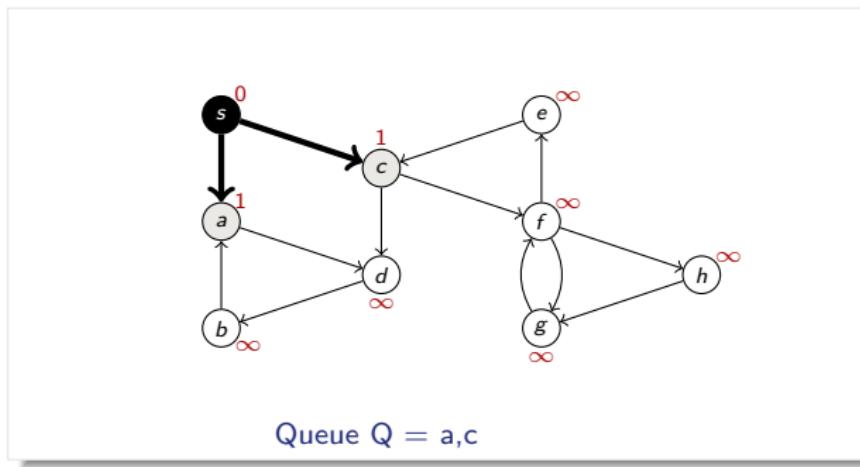
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



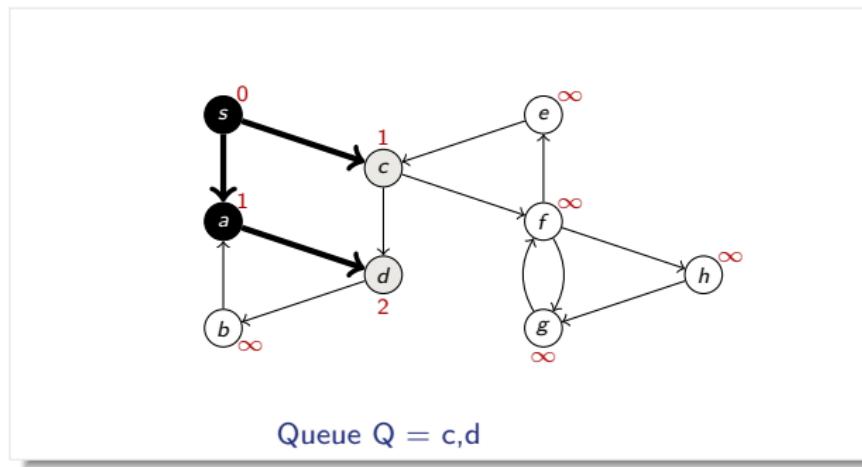
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



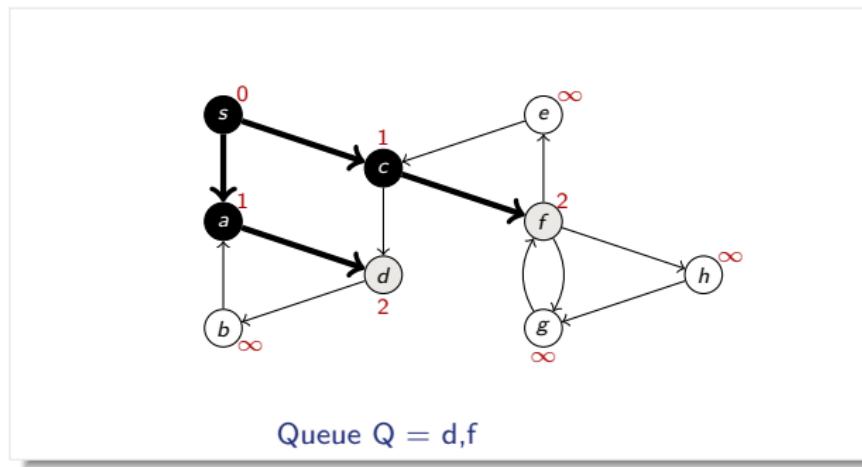
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



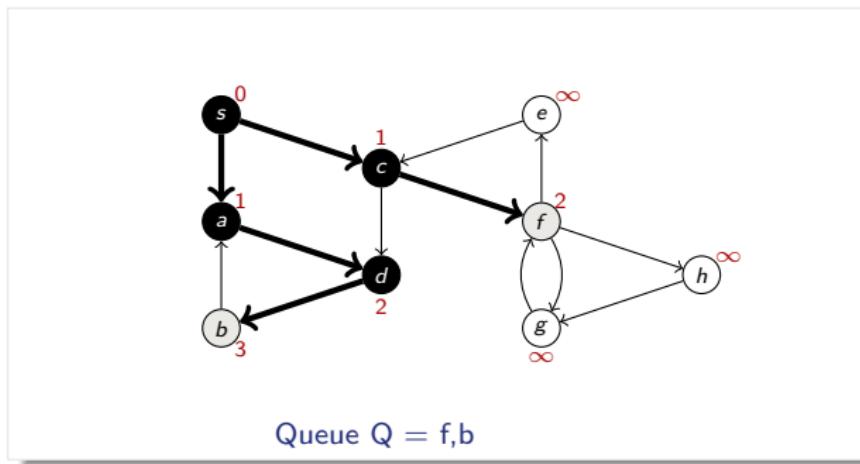
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



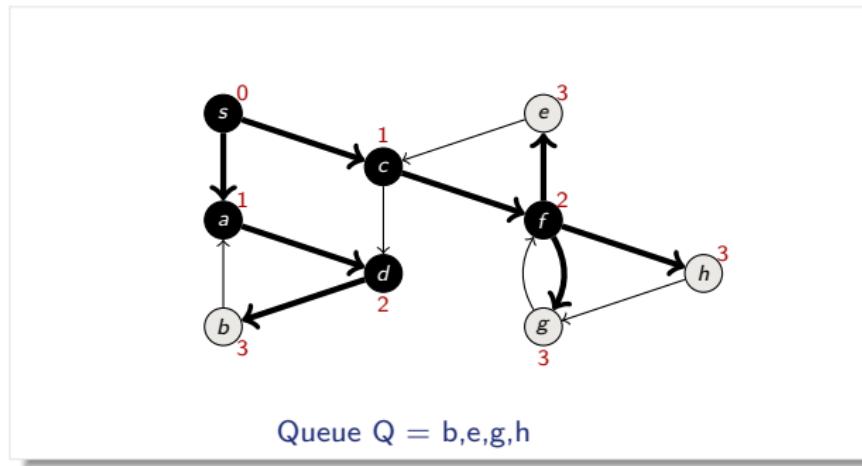
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



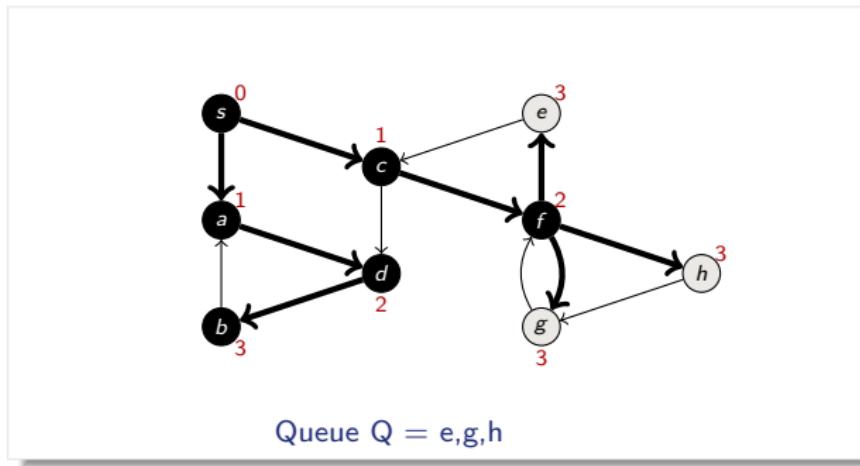
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



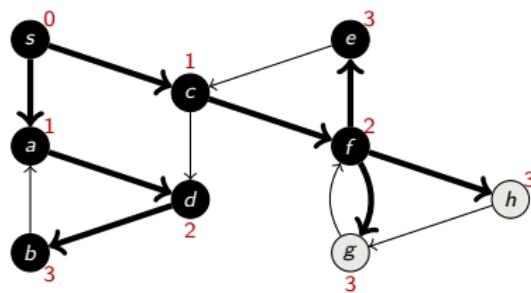
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



Final notes on BFS

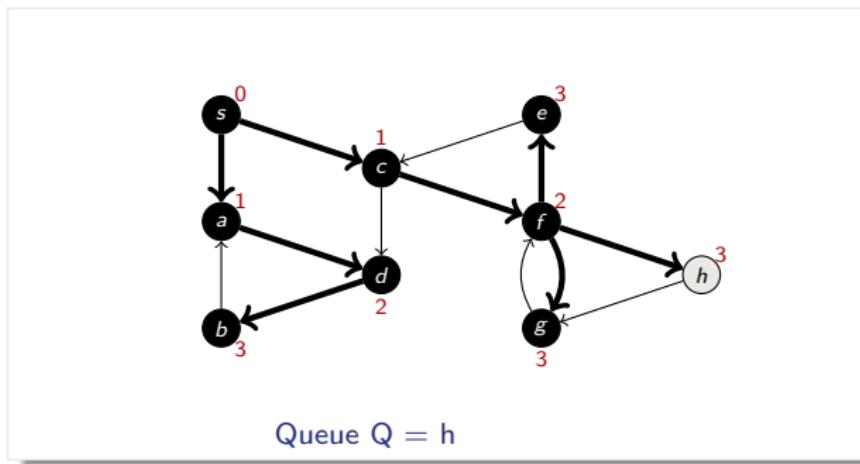
- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



Queue $Q = g, h$

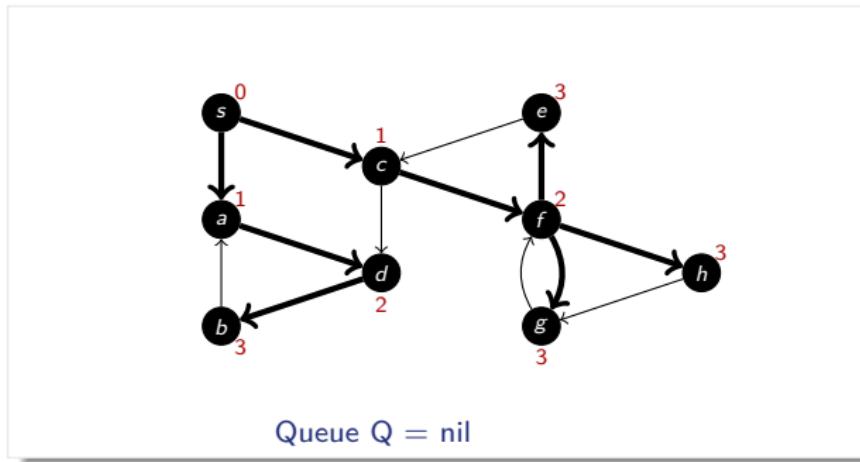
Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



Final notes on BFS

- ▶ BFS may not reach all the vertices
- ▶ We can save the shortest path tree by keeping track of the edge that discovered the vertex



Depth-First Search

Definition

INPUT: Graph $G = (V, E)$, either directed or undirected

OUTPUT: 2 timestamps on each vertex: $v.d = \mathbf{discovery\ time}$ and $v.f = \mathbf{finishing\ time}$

Depth-First Search

Definition

INPUT: Graph $G = (V, E)$, either directed or undirected

OUTPUT: 2 timestamps on each vertex: $v.d = \text{discovery time}$ and $v.f = \text{finishing time}$

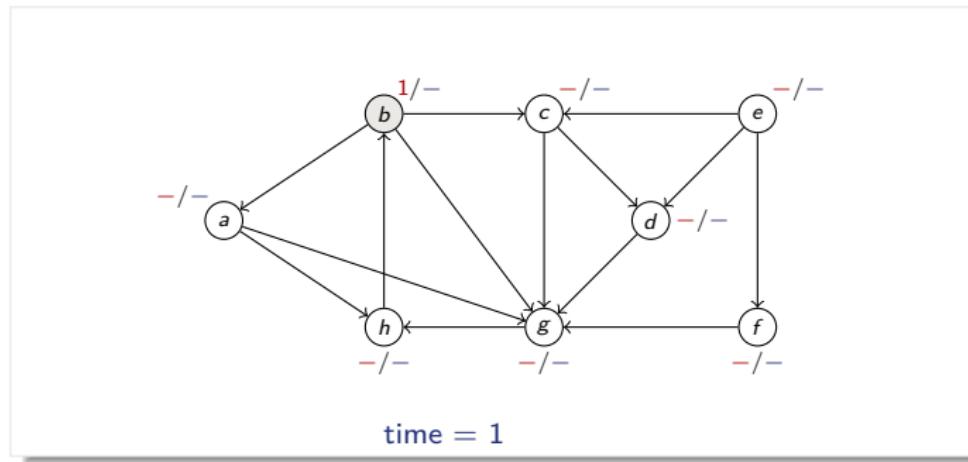
Idea:

- ▶ Methodically explore *every* edge
- ▶ Start over from different vertices as necessary
- ▶ As soon as we discover a vertex explore from it,
 - ▶ Unlike BFS, which explores vertices that are close to a source first

Example of DFS

As DFS progresses, every vertex has a color:

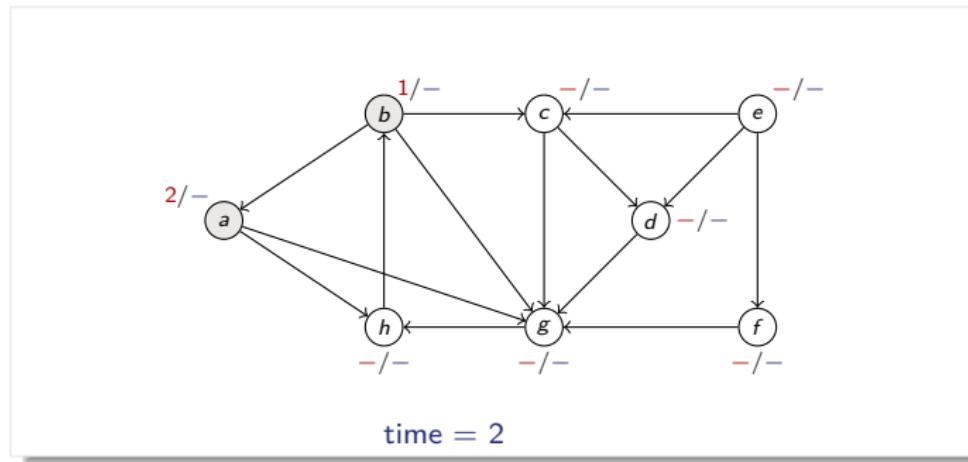
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

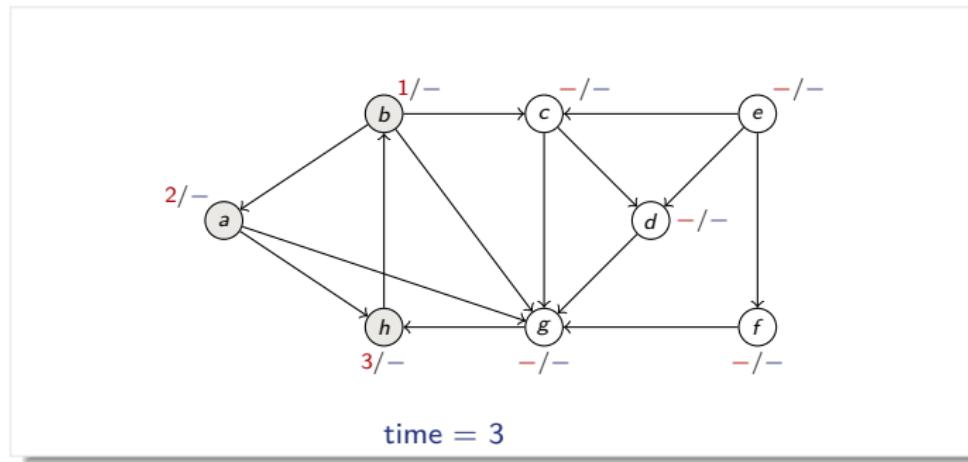
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

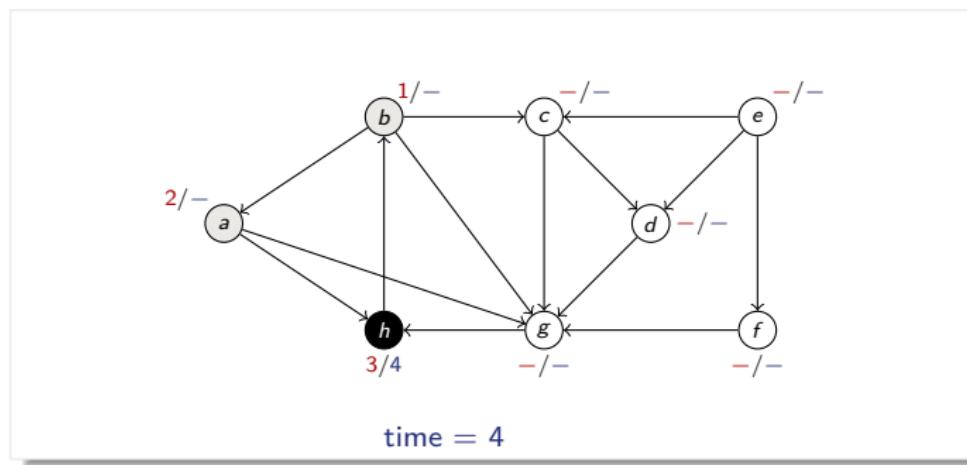
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

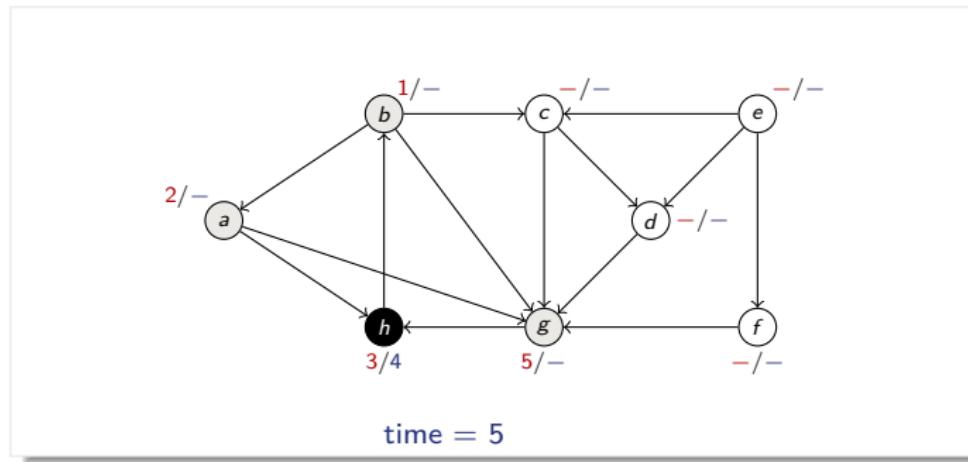
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

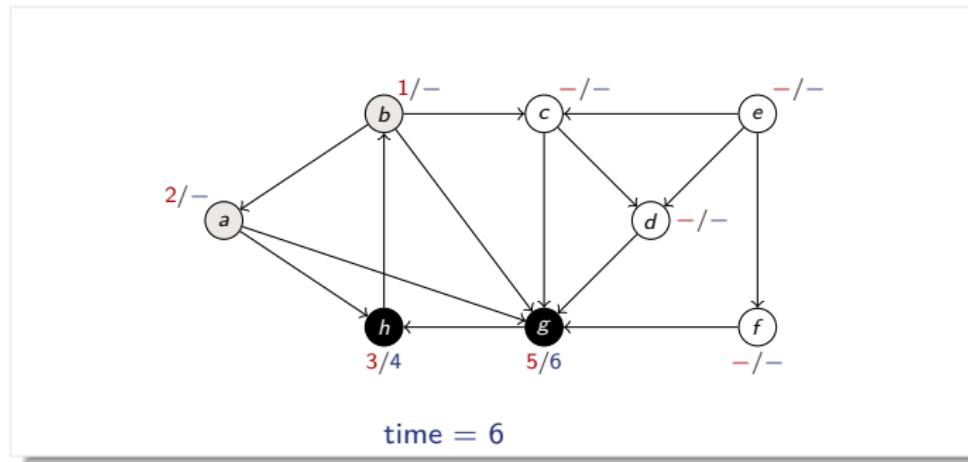
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

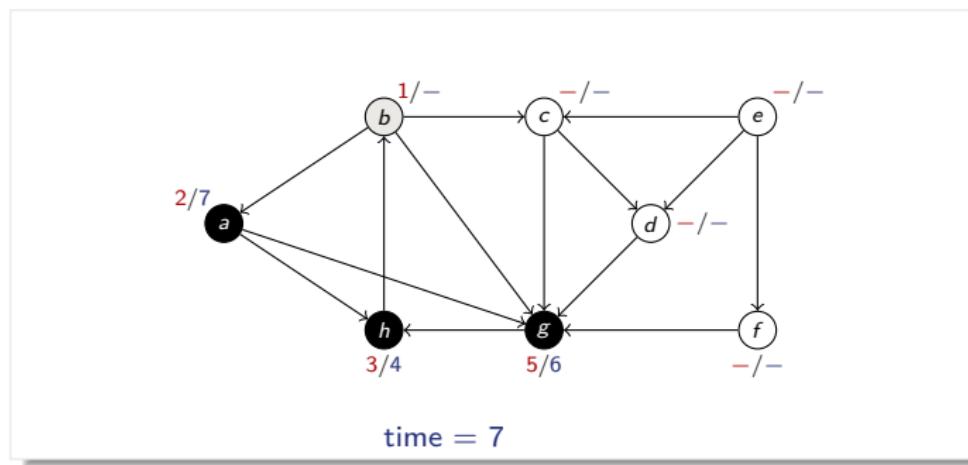
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

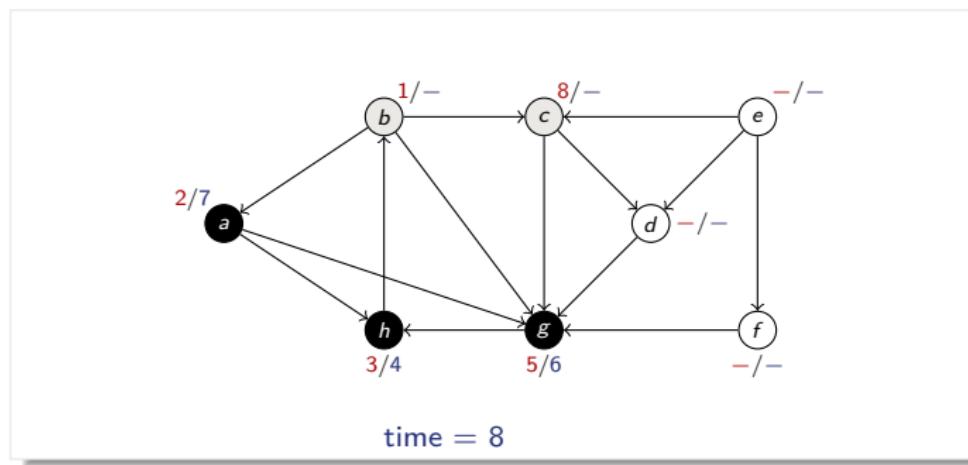
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

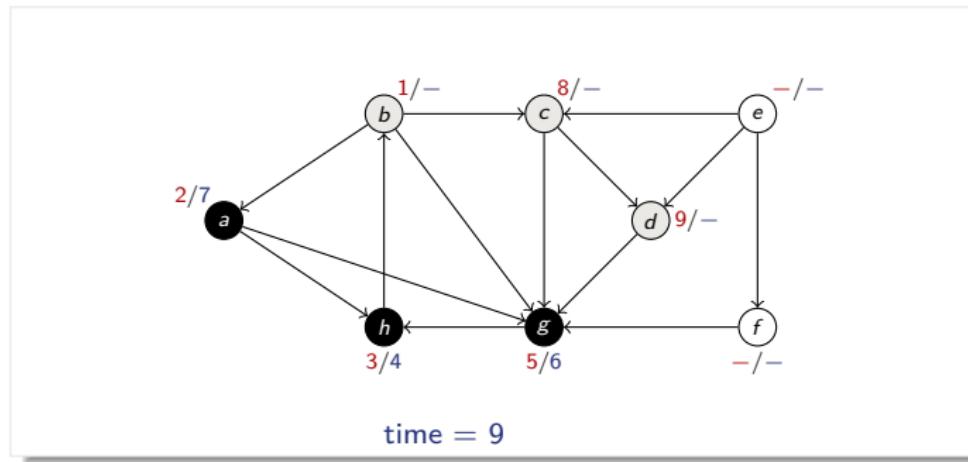
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

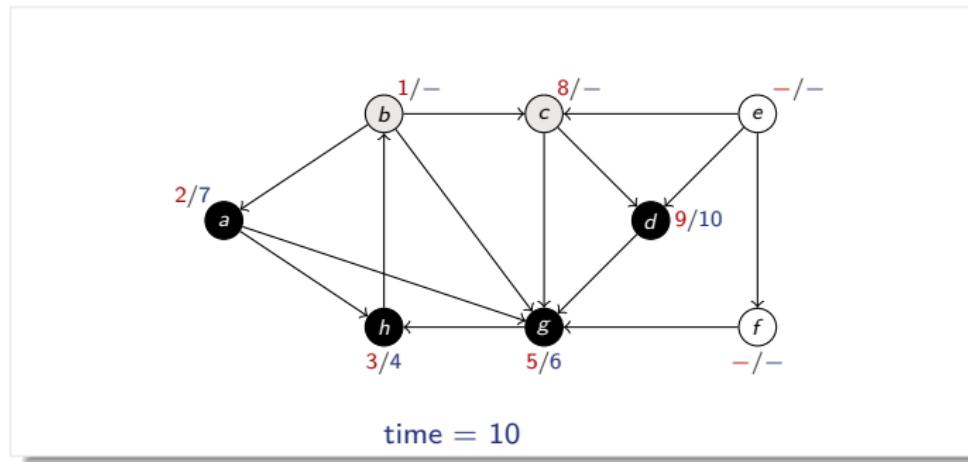
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

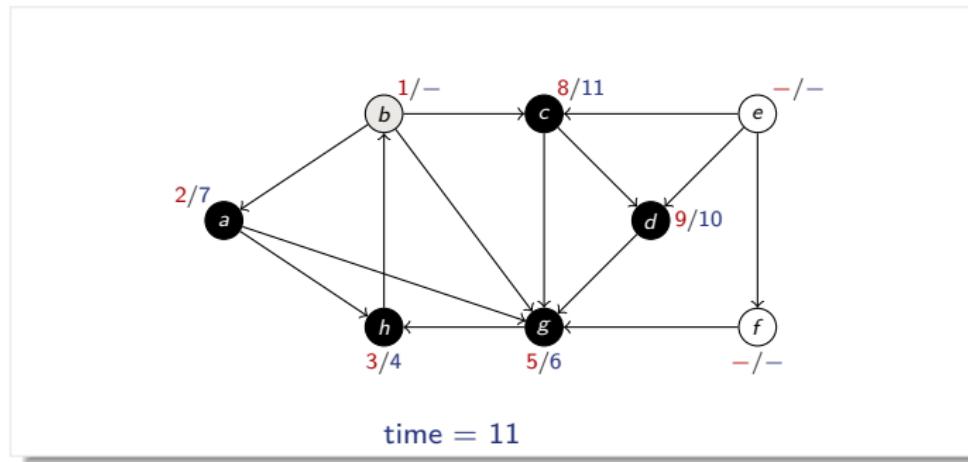
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

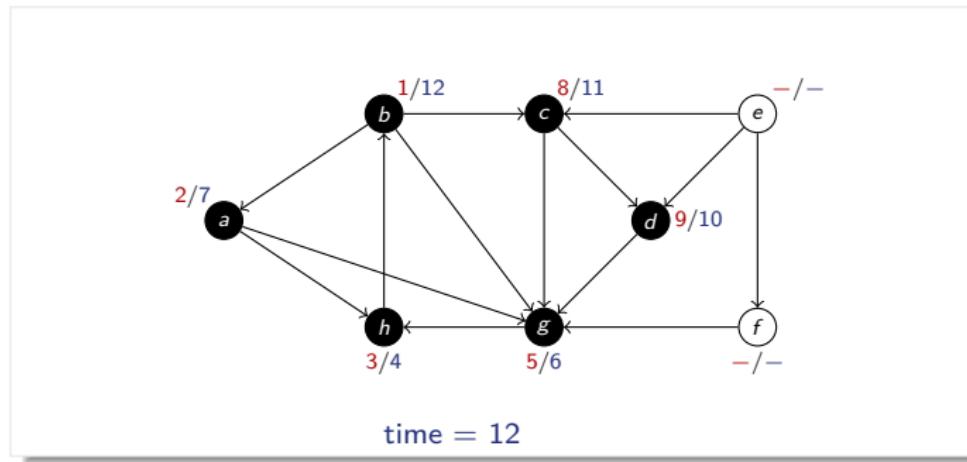
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

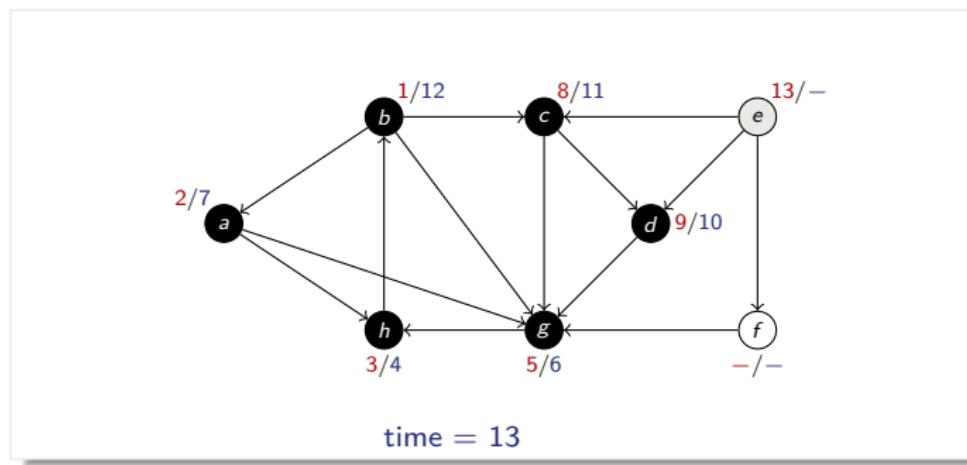
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

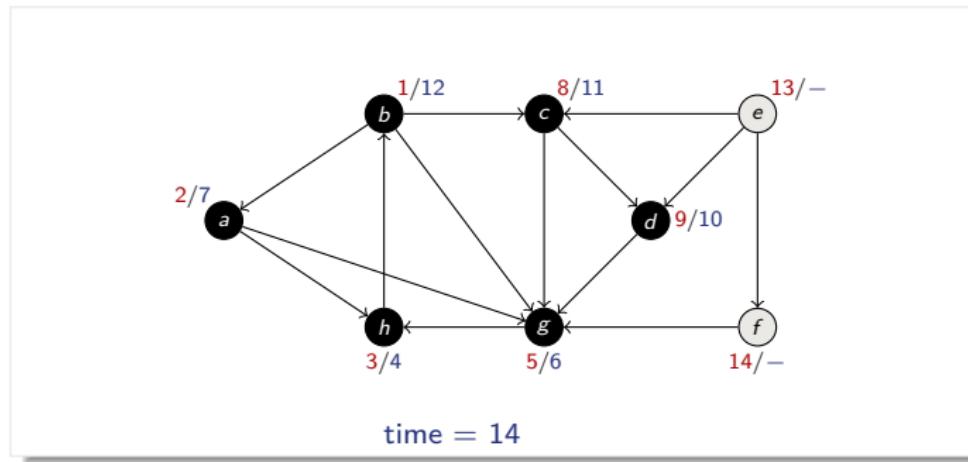
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

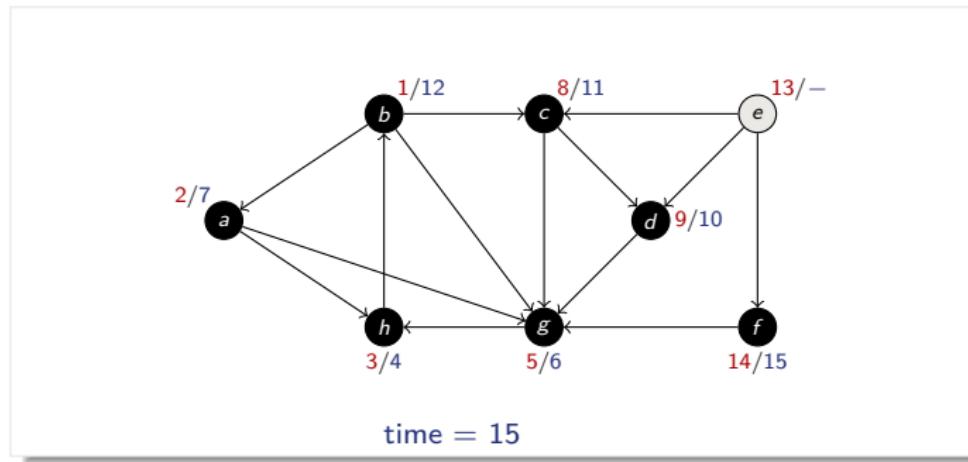
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

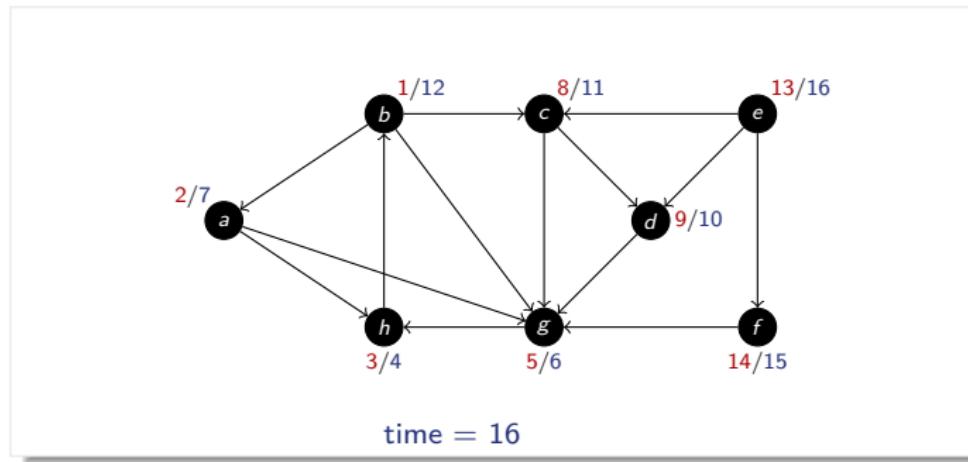
- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Example of DFS

As DFS progresses, every vertex has a color:

- ▶ WHITE = undiscovered
- ▶ GRAY = discovered, but not finished (not done exploring from it)
- ▶ BLACK = finished (have found everything reachable from it)



Pseudocode of DFS

```
DFS( $G$ )
  for each  $u \in G.V$ 
     $u.color = \text{WHITE}$ 
     $time = 0$ 
    for each  $u \in G.V$ 
      if  $u.color == \text{WHITE}$ 
        DFS-VISIT( $G, u$ )
```

```
DFS-VISIT( $G, u$ )
   $time = time + 1$ 
   $u.d = time$ 
   $u.color = \text{GRAY}$ 
  for each  $v \in G.Adj[u]$            // discover  $u$ 
    if  $v.color == \text{WHITE}$            // explore  $(u, v)$ 
      DFS-VISIT( $v$ )
     $v.color = \text{BLACK}$ 
   $time = time + 1$ 
   $u.f = time$                       // finish  $u$ 
```

Pseudocode of DFS

DFS-VISIT(G, u)

time = *time* + 1

u.d = time

u.color = GRAY

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

u.color = BLACK

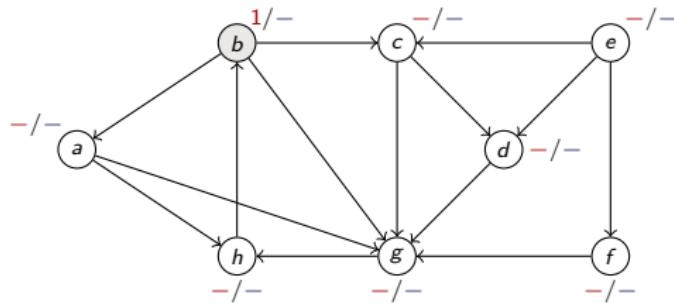
time = time + 1

u.f = time

// discover u

// explore (u, v)

// finish u



time = 1

Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

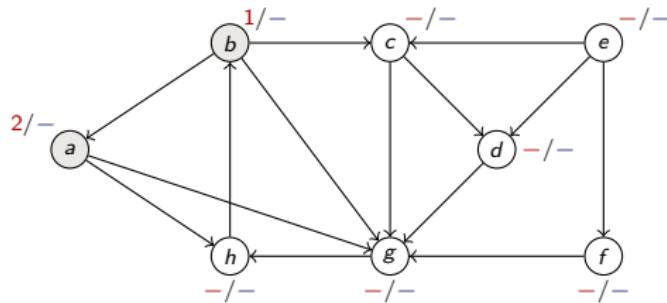
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



time = 2

Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$
DFS-VISIT(v)

$u.color = \text{BLACK}$

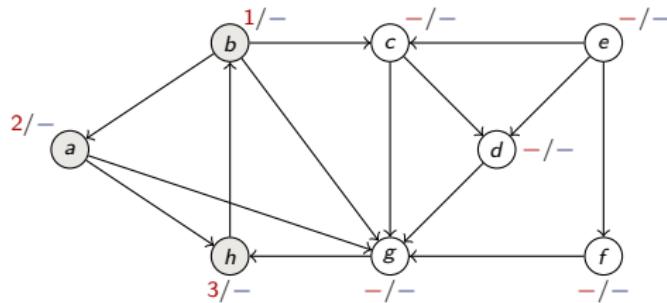
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

time = *time* + 1

u,d = time

u.color = GRAY

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

u.color = BLACK

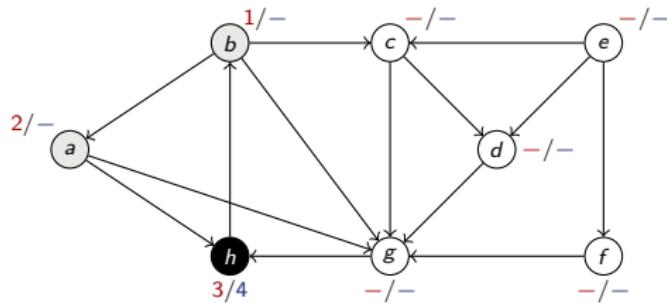
time = *time* + 1

u.f = time

// discover u

// explore (u, v)

// finish u



time = 4

Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == WHITE$

DFS-VISIT(v)

$u.color = BLACK$

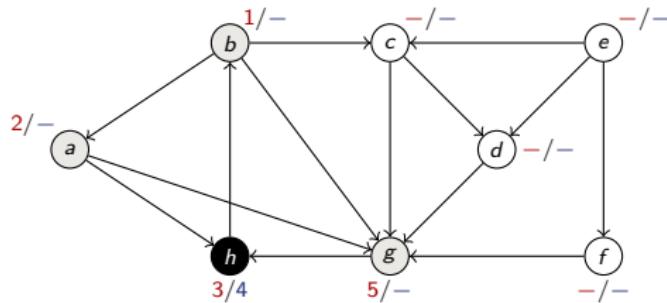
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

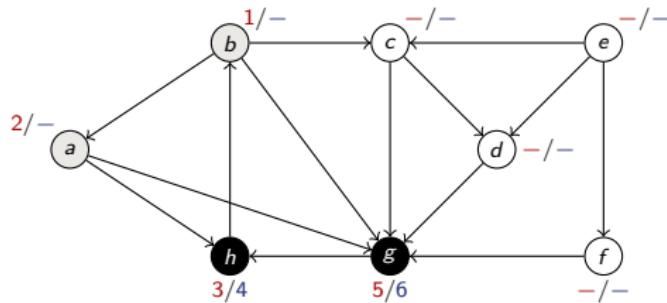
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == WHITE$

DFS-VISIT(v)

$u.color = BLACK$

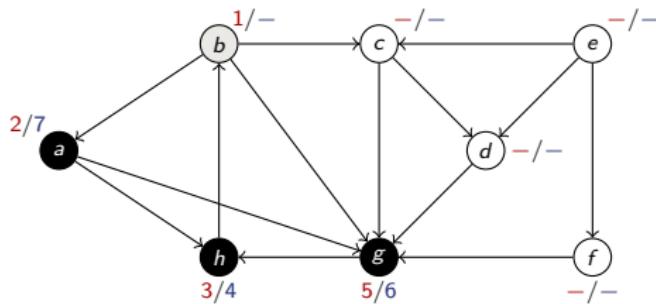
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == WHITE$
DFS-VISIT(v)

$u.color = BLACK$

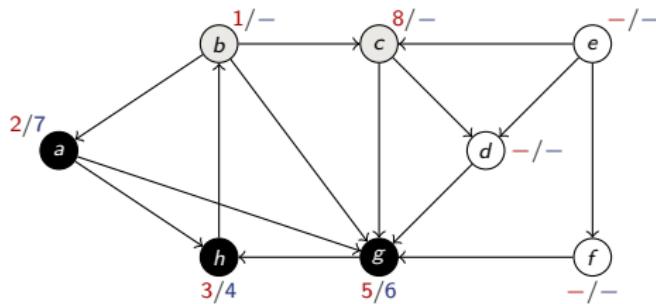
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == WHITE$
DFS-VISIT(v)

$u.color = BLACK$

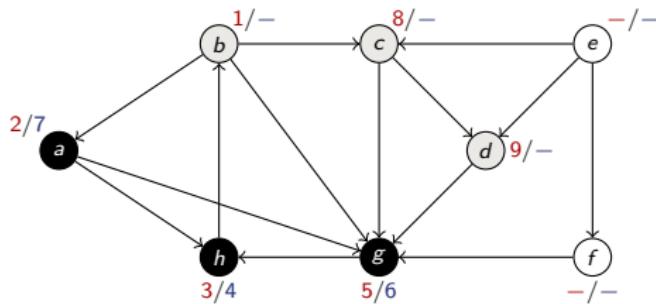
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$
DFS-VISIT(v)

$u.color = \text{BLACK}$

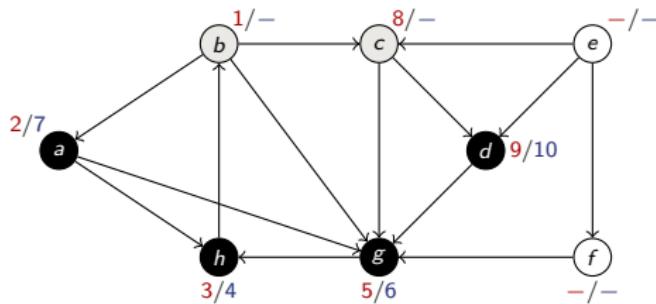
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == WHITE$

DFS-VISIT(v)

$u.color = BLACK$

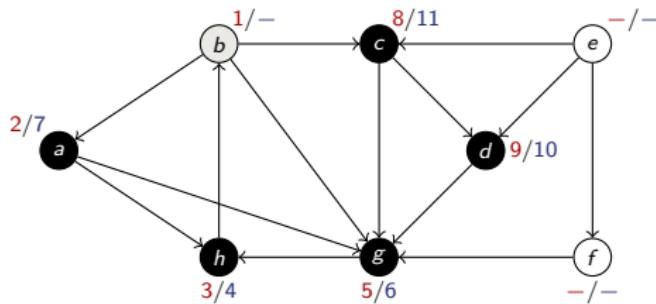
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == WHITE$

DFS-VISIT(v)

$u.color = BLACK$

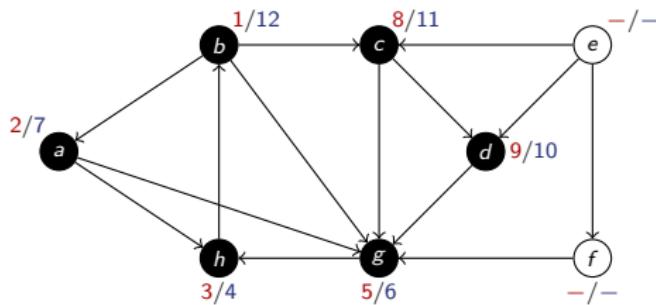
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

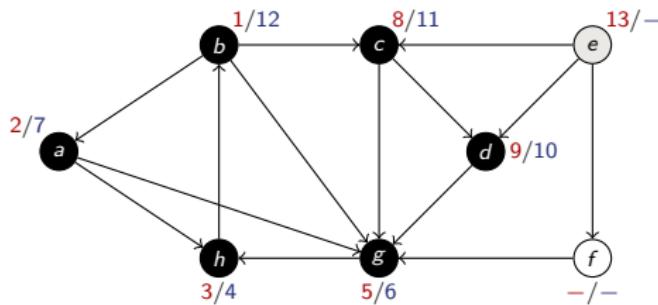
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$
DFS-VISIT(v)

$u.color = \text{BLACK}$

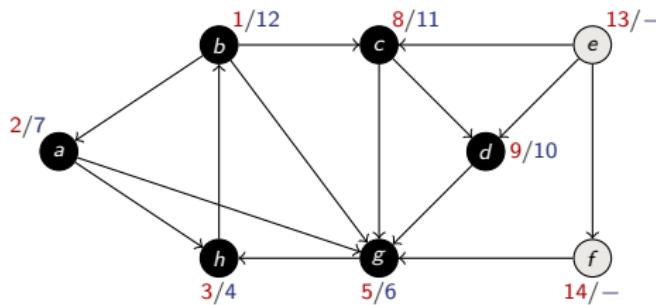
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



time = 14

Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

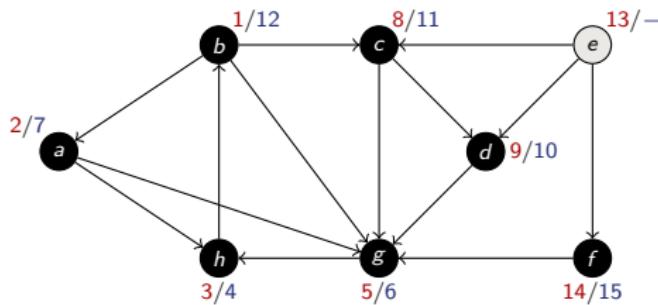
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



Pseudocode of DFS

DFS-VISIT(G, u)

$time = time + 1$

$u.d = time$

$u.color = GRAY$

for each $v \in G.Adj[u]$

if $v.color == \text{WHITE}$

DFS-VISIT(v)

$u.color = \text{BLACK}$

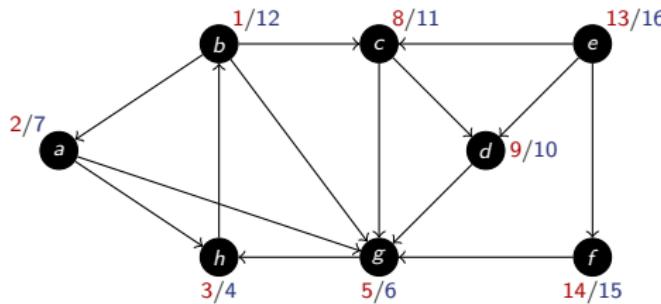
$time = time + 1$

$u.f = time$

// discover u

// explore (u, v)

// finish u



time = 16

Analysis

DFS forms a **depth-first forest** comprised of ≥ 1 **depth-first trees**. Each tree is made of edges (u, v) such that u is gray and v is white when (u, v) is explored.

Analysis

DFS forms a **depth-first forest** comprised of ≥ 1 **depth-first trees**. Each tree is made of edges (u, v) such that u is gray and v is white when (u, v) is explored.

Runtime analysis:

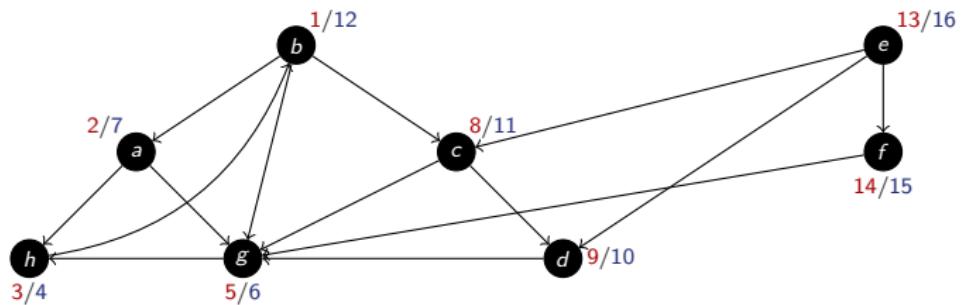
Analysis

DFS forms a **depth-first forest** comprised of ≥ 1 **depth-first trees**. Each tree is made of edges (u, v) such that u is gray and v is white when (u, v) is explored.

Runtime analysis: $\Theta(V + E)$

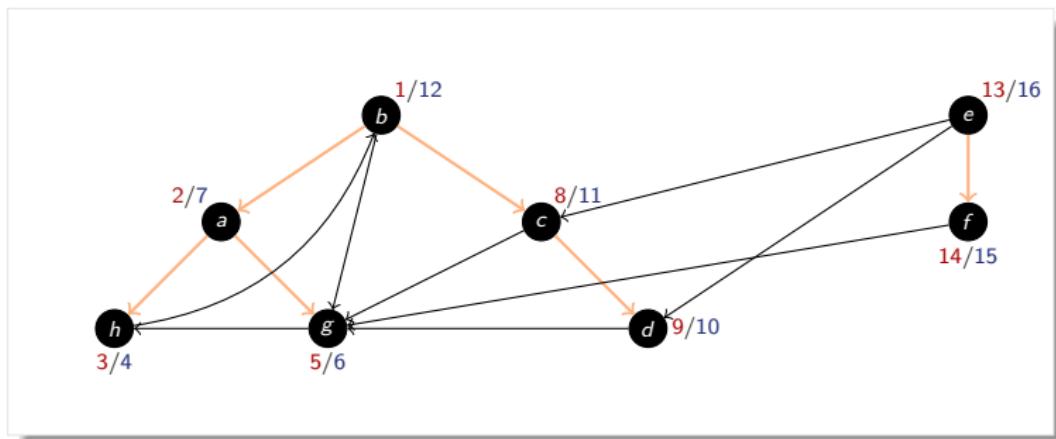
- ▶ $\Theta(V)$ because each vertex is discovered once
- ▶ $\Theta(E)$ because each edge is examined once if directed graph and twice if undirected graph.

Classification of edges



Classification of edges

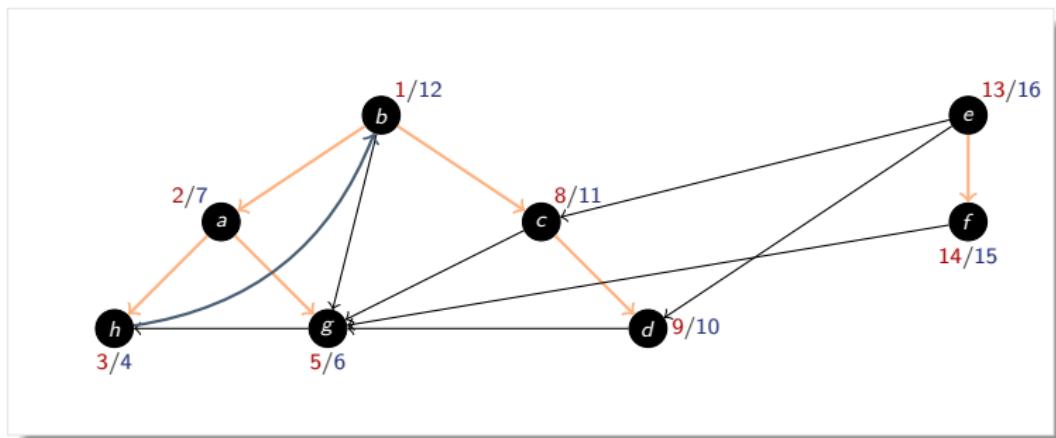
Tree edge: In the depth-first forest, found by exploring (u, v)



Classification of edges

Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

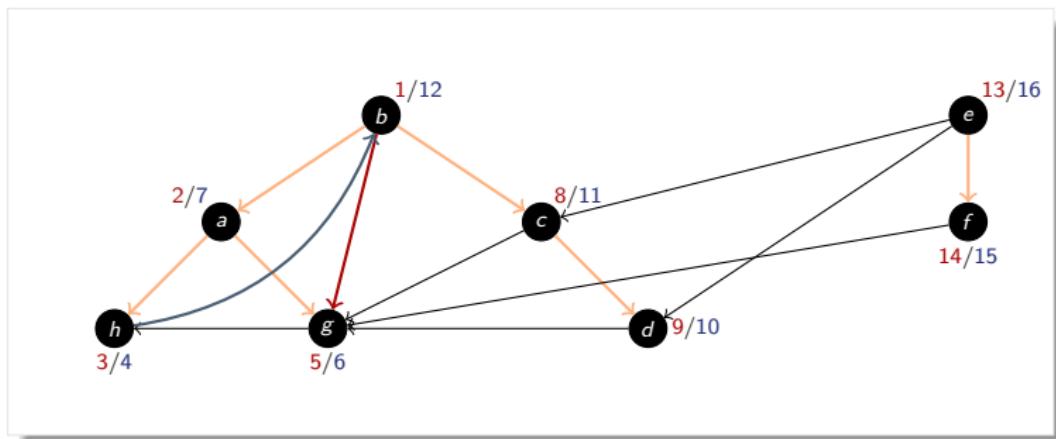


Classification of edges

Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u , but not a tree edge



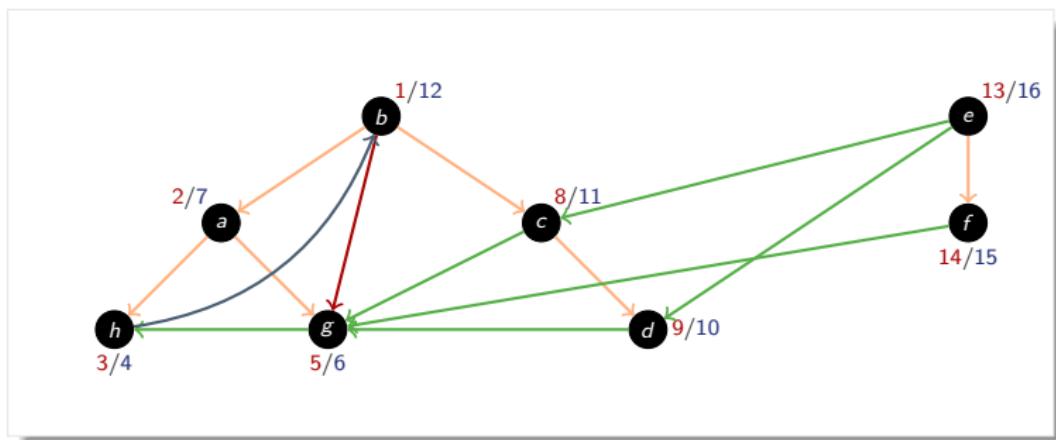
Classification of edges

Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u , but not a tree edge

Cross edge: any other edge



Classification of edges

Tree edge: In the depth-first forest, found by exploring (u, v)

Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u , but not a tree edge

Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or cross-edges. Why?

