Algorithms: Dynamic Programming

(Optimal Binary Search Trees) and Graphs

Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 13, 2.04.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

Lecture 13, 2.04.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167

Lecture 13, 2.04.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° + 3 — /167

Lecture 13, 2.04.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° 4+ 3 — /167
What is 2° 4+ 3 — /167

Lecture 13, 2.04.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° 4+ 3 — /167
What is 2° 4+ 3 — /167

What is 25 + 3 — /167

Lecture 13, 2.04.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167

What is 2° +3 — /167

Lecture 13, 2.04.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 25 + 3 — /167

What is 25 + 3 — /167

Lecture 13, 2.04.2025

DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2% 4+ 3 — /167
What is 25 +3 — /167
What is 2° + 3 — /167
What is 2° +3 — /167
What is 25 + 3 — /167
What is 2° + 3 — /167

What is 2° +3 — /167

Lecture 13, 2.04.2025

Dynamic Programming (DP)

Main idea:
» Remember calculations already made

> Saves enormous amounts of computation

Lecture 13, 2.04.2025

Dynamic Programming (DP)

Main idea:
» Remember calculations already made

> Saves enormous amounts of computation

Allows to solve many optimization problems
> Always at least one question in google code jam needs DP

Lecture 13, 2.04.2025

Key elements in designing a DP-algorithm

Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve

Lecture 13, 2.04.2025

Key elements in designing a DP-algorithm

Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Lecture 13, 2.04.2025

Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Overlapping subproblems

> A naive recursive algorithm may revisit the same (sub)problem over
and over.

» Top-down with memoization
Solve recursively but store each result in a table

» Bottom-up
Sort the subproblems and solve the smaller ones first; that way, when solving a

subproblem, have already solved the smaller subproblems we need

ROD CUTTING

Lecture 13, 2.04.2025

Definition
INPUT: A length n and table of prices p;, for i =1,...,n

OUTPUT: The maximum revenue obtainable for rods whose lengths
sum up to n, computed as the sum of the prices for the
individual rods.

Lecture 13, 2.04.2025

Definition
INPUT: A length n and table of prices p;, for i =1,...,n

OUTPUT: The maximum revenue obtainable for rods whose lengths
sum up to n, computed as the sum of the prices for the
individual rods.

9 1 8 5 5 8 1
U BBBD oD e ODo

(@) (b) (¢) (d

1 5 1 5 1 1 1 1 1 1
OO Moo oooo

(e) (® (€3] (h)

Lecture 13, 2.04.2025

Dynamic programming algorithm

Choice:

Lecture 13, 2.04.2025

Dynamic programming algorithm

Choice: where to make the leftmost cut

Lecture 13, 2.04.2025

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure:

Lecture 13, 2.04.2025

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the
remaining piece in an optimal way

Lecture 13, 2.04.2025

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the
remaining piece in an optimal way

Hence, if we let r(n) be the optimal revenue from a rod of length n, we
can express r(n) recursively as follows

r(n):{o ifn=0

maxi<i<p {pi + r(n—1i)} otherwise if n>1

Lecture 13, 2.04.2025

Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the
remaining piece in an optimal way

Hence, if we let r(n) be the optimal revenue from a rod of length n, we
can express r(n) recursively as follows

r(n):{o ifn=0

maxi<i<p {pi + r(n—1i)} otherwise if n>1

Optimal substructure: Solve recurrence using top-down with memoization
or bottom-up which yields an algorithm that runs in time ©(n?).

Lecture 13, 2.04.2025

Parenthesization | Cost computation | Cost

Ax((BxC)xD)|20-1-10+20-10-100+ 50-20-100 | 120, 200
(Ax(BxC)xD|20-1-10+50-20-10+50-10-100 | 60,200
(AxB)x(CxD)| 50-20-1+1-10-100+50-1-100 | 7,000

MATRIX-CHAIN MULTIPLICATION

Lecture 13, 2.04.2025

Matrix-chain multiplication

Definition
INPUT: A chain (A;, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;

OUTPUT: A full parenthesization of the product A;A>--- A, in a
way that minimizes the number of scalar multiplications

Lecture 13, 2.04.2025

Matrix-chain multiplication

Definition
INPUT: A chain (A;, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;

OUTPUT: A full parenthesization of the product A;A>--- A, in a
way that minimizes the number of scalar multiplications

Example: Optimal parenthesization of A4 3 X B35 x GCs5 is
(As3 X (B3s x Gs2))

and requires 3-5-2 + 4 -3 -2 multiplications.

Lecture 13, 2.04.2025

Dynamic programming algorithm

Choice:

Lecture 13, 2.04.2025

Dynamic programming algorithm

Choice: where to make the outermost parenthesis

(Ar- - A)(Akgr - An)

Lecture 13, 2.04.2025

Dynamic programming algorithm

Choice: where to make the outermost parenthesis

(Ar- - A)(Akgr - An)

Optimal substructure:

Lecture 13, 2.04.2025

Dynamic programming algorithm

Choice: where to make the outermost parenthesis

(Ar- - A)(Akgr - An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Lecture 13, 2.04.2025

Dynamic programming algorithm

Choice: where to make the outermost parenthesis

(Ar- - A)(Akgr - An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i, j] be the optimal value for chain multiplication of
matrices A;, ..., Aj, we can express m(i, /] recursively as follows

i j] = {0 ifi=j

minj<k<j {mli, k] + mlk + 1,1 + pi—1pxp;} otherwise if i < j

Lecture 13, 2.04.2025

Choice: where to make the outermost parenthesis

(Ar--- A)(Akgr - An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i, j] be the optimal value for chain multiplication of
matrices A;, ..., A;, we can express mli, j] recursively as follows

mlij] = {0 ifi=

minj<k<j {mli, k] + mlk + 1,j] + pi—1pxp;} otherwise if i < j

Overlapping subproblems: Solve recurrence using top-down with
memoization or bottom-up which yields an algorithm that runs in time

o(n?).

LONGEST COMMON SUBSEQUENCE

Lecture 13, 2.04.2025

Longest common subsequence

Definition
INPUT: 2 sequences, X = (x1,...,Xm) and Y = (y1,...,¥n)-

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn’t have to be consecutive, but it has to be in
order

Lecture 13, 2.04.2025

Longest common subsequence

Definition
INPUT: 2 sequences, X = (x1,...,Xm) and Y = (y1,...,¥n)-

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn’t have to be consecutive, but it has to be in
order

Example:

heroically

scholar]y

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

BABDBA

DACBCBA

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

BABDBA
A

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice?

BABDBA
A

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

BABDBA

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

BABDBA
A

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

BABDBA

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

BABDBA
A

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA
A

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA
A

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

A
DACBCBA
A

Lecture 13, 2.04.2025

Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025

Dynamic programming algorithm

Let Xj = (x1,x2,...,X;) and Yj = (y1,y2,...,¥))

Choice:

Lecture 13, 2.04.2025

Dynamic programming algorithm

Let Xj = (x1,x2,...,X;) and Yj = (y1,y2,...,¥))

Choice:
If x; = y; then either

> OPT "matches” x; with y; and remaining OPT is in (Xj_1, Yj_1);
> OPT isin (Xj_1,Y)); or
> OPT isin (X, Yi_1)

Lecture 13, 2.04.2025

Dynamic programming algorithm

Let Xj = (x1,x2,...,X;) and Yj = (y1,y2,...,¥))

Choice:
If x; = y; then either

> OPT "matches” x; with y; and remaining OPT is in (Xj_1, Yj_1);
> OPT isin (Xj_1,Y)); or
> OPT isin (X, Yi_1)
If x; # y; then either
> OPT isin (Xj_1,Y)); or
> OPT isin (X, Yj_1)

Lecture 13, 2.04.2025

Dynamic programming algorithm

Let Xj = (x1,x2,...,X;) and Yj = (y1,y2,...,¥))

Choice:
If x; = y; then either

> OPT "matches” x; with y; and remaining OPT is in (Xj_1, Yj_1);
> OPT isin (Xj_1,Y)); or
> OPT isin (X, Yi_1)
If x; # y; then either
> OPT isin (Xj_1,Y)); or
> OPT isin (X, Yj_1)

We proved that we can assume that OPT “matches” x; with y; if they
are equal so we can simplify the first case

Lecture 13, 2.04.2025

Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

C[i’j] =

Lecture 13, 2.04.2025

Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

ifi=0o0rj=0
cli.j] =

Lecture 13, 2.04.2025

Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
cli,j] =

Lecture 13, 2.04.2025

Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
cli,j]= ifi,j>0and x =y

Lecture 13, 2.04.2025

Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
clijl=<%cli-1,j—-1]+1 if i,j>0and x; =y;

Lecture 13, 2.04.2025

Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
clijl=<%cli-1,j—-1]+1 if i,j>0and x; =y;
if i,j>0and x; # y;

Lecture 13, 2.04.2025

Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
clijl=<%cli-1,j—-1]+1 if i,j>0and x; =y;
max(c[i —1,/],cli,j—1]) ifi,j>0and x; #y;

Lecture 13, 2.04.2025

Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
clijl=<%cli-1,j—-1]+1 if i,j>0and x; =y;
max(c[i —1,/],cli,j—1]) ifi,j>0and x; #y;

> Naive implementation solves same problems many many times

> Solve with Bottom-Up or Top-Down with Memoization in time
O(m - n).

Lecture 13, 2.04.2025

Pseudocode and analysis

LCS-LENGTH(X, Y, m,n)
leth[1..m,1..n]and c[0..m,o0..n] be new tables
fori = 1tom

cli,0] =0
for j =0ton
cl0,j1=0
fori = 1tom
forj = 1ton
if x; == y;
cli,jl=cli-1,j=1]+1
bli. j] ="\"
elseifc[i — 1, j] > cli,j —1]
cli,jl=cli—1.j]

bli.j] = 1"
else cfi. j] = cli.j 1]
bli.j] = <

return ¢ and b

Lecture 13, 2.04.2025

Pseudocode and analysis

LCS-LENGTH(X, Y, m,n)
leth[1..m,1..n]and c[0..m,o0..n] be new tables
fori = 1tom

cli,0] =0
for j =0ton
cl0,j1=0
fori = 1tom
forj = 1ton
if x; == y;
cli,jl=cli-1,j=1]+1
bli. jl ="\
elseifc[i — 1, j] > cli,j —1]
cli,jl=cli—1.j]

bli.j] = 1"
else cfi. j] = cli.j 1]
bli.j] = <

return ¢ and b

> Time dominated by instructions inside the two nested loops which
execute m - n times

Lecture 13, 2.04.2025

Pseudocode and analysis

LCS-LENGTH(X, Y, m,n)
leth[1..m,1..n]and c[0..m,o0..n] be new tables
fori = 1tom

cli,0] =0
for j =0ton
cl0,j1=0
fori = 1tom
forj = 1ton
ifx,- ==Y
cli,jl=cli-1,j=1]+1
bli. jl ="\
elseifc[i — 1, j] > cli,j —1]
cli,jl=cli—1.j]

bli.j] = 1"
else cfi. j] = cli.j 1]
bli.j] = <

return ¢ and b

> Time dominated by instructions inside the two nested loops which
execute m - n times

> Total time is ©(m - n).

Lecture 13, 2.04.2025

OPTIMAL BINARY SEARCH TREES

Lecture 13, 2.04.2025

Searching on Facebook

More popular than

Lecture 13, 2.04.2025

Optimal binary search trees

> Given sequence K = (ki, ko, ..., k) of n distinct keys, sorted
(k1 <k <. < k,,).

> Want to build a binary search tree from the keys

Lecture 13, 2.04.2025

Optimal binary search trees

> Given sequence K = (ki, ko, ..., k) of n distinct keys, sorted
(k1 <k <. < k,,).

> Want to build a binary search tree from the keys
> For k;, have probability p; that a search is for k;

» Want BST with minimum expected search cost

Lecture 13, 2.04.2025

Optimal binary search trees

> Given sequence K = (ki, ko, ..., k) of n distinct keys, sorted
(kl <k <. < k,,).

> Want to build a binary search tree from the keys
> For k;, have probability p; that a search is for k;
» Want BST with minimum expected search cost

> Actual cost = # of items examined

For key k;, cost = depth -,—(k,-) + 1, where depth(k;) denotes the depth of
ki in BST T

Lecture 13, 2.04.2025

Optimal binary search trees

> Given sequence K = (ki, ko, ..., k) of n distinct keys, sorted
(kl <k <. < k,,).

> Want to build a binary search tree from the keys

> For k;, have probability p; that a search is for k;

» Want BST with minimum expected search cost

> Actual cost = # of items examined
For key k;, cost = depth(k;) + 1, where depthr(k;) denotes the depth of
ki in BST T

n

E[search cost in T] = Z(depth-r(k,-) +1)p;
i=1

=1+ depthr(k)-p;
i=1

Lecture 13, 2.04.2025

Lecture 13, 2.04.2025

4

5

Lecture 13, 2.04.2025

.05

3

i depthy(k;) depthr(k)- p;i
1 1 .25
2 0 0
3 2 1
4 1 2
5 2 .6
1.15

i1 2 3 45 i depthy(k) depthy(K)- p;
pi| 25 2 .05 3 1 1 25

2 0 0

3 2

4 1

5 2

1.15

Therefore, E[search cost] = 2.15

Lecture 13, 2.04.2025

Lecture 13, 2.04.2025

i |1 2

3

4

5

pi| 25 2

Lecture 13, 2.04.2025

.05

3

i depthy(k;) depthy(ki)- p;
1 1 .25
2 0 0
3 3 .15
4 2 4
5 1 3

1.10

i |1 2 3 4 5

p,.|_25 2 05 2 3 i depthr(ki) depthr(k;)- pi
1 25

0 0

3 15

2

1

A4
3
1.10

A W N

Therefore, E[search cost] = 2.10, which
turns out to be optimal

Lecture 13, 2.04.2025

> Optimal BST might not have smallest height

> Optimal BST might not have highest-probability key at root

Lecture 13, 2.04.2025

> Optimal BST might not have smallest height

> Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
> Construct each n-node BST
> For each put in keys

> Then compute expected search cost

Lecture 13, 2.04.2025

> Optimal BST might not have smallest height
» Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
> Construct each n-node BST
> For each put in keys
> Then compute expected search cost

> But there are exponentially many trees

2

Lecture 13, 2.04.2025

> Optimal BST might not have smallest height
» Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
> Construct each n-node BST
> For each put in keys
> Then compute expected search cost

> But there are exponentially many trees

2

DP comes to the rescue :)

Lecture 13, 2.04.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

ONONONONONONONONO)

Lecture 13, 2.04.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

®
@& G

Lecture 13, 2.04.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

Lecture 13, 2.04.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

Lecture 13, 2.04.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

()
() () ©

E[search cost] = ps + 2ps + 3p2 + 4p1 + 4p3 + 2ps + 3p7 + 3pg + 4ps

Lecture 13, 2.04.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

E[search cost] = ps
+ p1 + p2 + p3 + pg + E[search cost left subtree]
+ pe + p7 + pg + Py + E[search cost right subtree]

Lecture 13, 2.04.2025

Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

Build tree of nodes k; < ki11 < -+ < kj_1 < kj by selecting best root r:

opt. tree of
ket .- . kj

E[search cost] = p,
+pi + -+ + pr—1 + E[search cost left subtree]
+pry1 + - -+ + pj + E[search cost right subtree]

Lecture 13, 2.04.2025

Recursive formulation

> Let e[i,] = expected search cost of optimal BST of k;...k;

Lecture 13, 2.04.2025

Recursive formulation

> Let e[i,] = expected search cost of optimal BST of k;...k;

e[iaj] = {

Lecture 13, 2.04.2025

Recursive formulation

> Let e[i,] = expected search cost of optimal BST of k;...k;

. ifi=j+1
e[:,J]={ /

Lecture 13, 2.04.2025

Recursive formulation

> Let e[i,] = expected search cost of optimal BST of k;...k;

. 0 ifi=j+1
e[:,J]={ !

Lecture 13, 2.04.2025

Recursive formulation

> Let e[i,] = expected search cost of optimal BST of k;...k;

. 0 ifi=j+1
e[l,J]:{ . J
if i <j

Lecture 13, 2.04.2025

Recursive formulation

> Let e[i,] = expected search cost of optimal BST of k;...k;

i 0 ifi=j+1
’7 = . . - j e . .
A7 minizosi{elir = 1+ elr + 11+ Y pe} i <)

Lecture 13, 2.04.2025

Recursive formulation

> Let e[i,] = expected search cost of optimal BST of k;...k;

i 0 ifi=j+1
’7 = . . - j e . .
I\ minicosslelior — 1+ elr + 11+ Y pe} i i <)

> Solve using bottom-up or top-down with memoization

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+zj£:ipg} i<

0 1 2 3 4 5

S 1B~ W N =

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+zj£:ipg} i<

1 2 3 4 5

S 1B~ W N =
o

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+zj£:ipg} i<

e 1 2 3 4 5
1 .25

2 0

3 0

4 0

5 0

6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+zj£:ipg} i<

e 1 2 3 4 5
1 .25

2 0

3 0

4 0

5 0

6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 .25

2 0

3 0 .05

4 0

5 0

6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 .25

2 0

3 0 .05

4 0 2

5 0

6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 .25

2 0

3 0 .05

4 0 2

5 0 3
6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 25 .65

2 0

3 0 .05

4 0 2

5 0 3
6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 25 .65

2 0 2 3

3 0 .05

4 0 2

5 0 3
6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 25 .65

2 0 2 3

3 0 .05 3

4 0 2

5 0 3
6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 25 .65

2 0 2 3

3 0 .05 3

4 0 2 7
5 0 3
6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 25 .65

2 0 .

3 0 .05 3

4 0 2 7
5 0 3
6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 25 65 .

2 0 2 3 .15

3 0 .05 3

4 0 2 7
5 0 3
6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipz} i<

e 1 2 3 4 5
1 25 65 .

2 0 2 3 .15

3 0 05 3 .85
4 0 2 7
5 0 3
6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipz} i<

e 1 2 3 4 5
1 25 65 8 125

2 0 .75

3 0 .05 3 .85
4 0 2 7
5 0 3
6 0

Lecture 13, 2.04.2025

Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipz} i<

e 1 2 3 4 5
1 25 65 8 125

2 0 3 .75 135
3 0 .05 3 85
4 0 2 7
5 0 3
6 0

Lecture 13, 2.04.2025

Bottom-up example

ifi=j+1

i1 2 3 4
pi | 25 2 .05 3 e[i’j]:{min,—s,sj{e[i,r—1]+e[r+1,j]+Zi:ipz} ifi<)
e 1 2 3 4 5
1 25 65 8 125 21
2 0 2 3 75 135
3 0 .05 3 .85
4 0 2 7
5 0 3
6 0

Lecture 13, 2.04.2025

Bottom-up example

ifi=j+1

i1 2 3 4
pi | 25 2 .05 3 e[i’j]:{min,—s,sj{e[i,r—1]+e[r+1,j]+Zi:ipz} i<
e 1 2 3 4 5
1 25 65 8 125 21
2 0 2 3 75 1.35
3 0 .05 3 .85
4 0 2 7
5 0 3
6 0

Optimal BST has expected search cost 2.1
Can save decisions to reconstruct tree

Lecture 13, 2.04.2025

Pseudocode of bottom-up

OPTIMAL-BST(p.q,n)
lete[l..n+1,0..n],w[l..n+41,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

elii—1=0
wli.i—1]=0
for/ =1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = o0
wli.j] = wli.j~ 1+ p;
forr =itoj
t=eli,r—1]+elr+1,j]+wli,/]
ifr <eli.]
eli,jl=1
rootli, j] =r
return e and root

eli, j] records the expected search cost of optimal BST of k;,..., k;

r[i, j] records the best root in optimal BST of k;,..., k;

wli, j] records S_, p

Lecture 13, 2.04.2025

Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1]1=0
for/ =1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli.j] = wli.j =1+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ifr <eli, j]
eli,jl=1
rooti, j] = r
return e and root

Lecture 13, 2.04.2025

Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1]=0
for/ =1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli.j] = wli.j =1+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ifr <eli.]
eli,jl=1
rooti, j] = r
return e and root

> Runtime dominated by three nestled loops: total time is ©(n?)

Lecture 13, 2.04.2025

Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1]=0
for/ = 1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli.j] = wli.j =1+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ifr < eli.]
eli,jl=1
rooti, j] = r
return e and root

> Runtime dominated by three nestled loops: total time is ©(n?)

> Alternatively, ©(n?) cells to fill in

Lecture 13, 2.04.2025

Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1]=0
for/ = 1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli, j] = wli,j =11+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ifr < eli.]
eli.jl=1
rooti, j] = r
return e and root

> Runtime dominated by three nestled loops: total time is ©(n?)

> Alternatively, ©(n?) cells to fill in
Most cells take ©(n) time to fill in

Lecture 13, 2.04.2025

Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1]=0
for/ = 1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli, j] = wli,j =11+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ift <eli,]
eli.jl=1
rooti, j] = r
return e and root

> Runtime dominated by three nestled loops: total time is ©(n?)

> Alternatively, ©(n?) cells to fill in
Most cells take ©(n) time to fill in
Hence, total time is ©(n%)

Lecture 13, 2.04.2025

Summary of Dynamic Programming

> |dentify choices and optimal substructure

> Write optimal solution recursively as a function of smaller
subproblems

> Use top-down with memoization or bottom-up to solve the
recursion efficiently (without repeatedly solving the same subproblems)

» Do a lot of exercises!

Lecture 13, 2.04.2025

A graph G = (V, E) consists of
> a vertex set V
> an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

Undirected Graph Directed Graph

Lecture 13, 2.04.2025

A graph G = (V, E) consists of
> a vertex set V
> an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

Undirected Graph Directed Graph

How to represent a graph in the computer?

Lecture 13, 2.04.2025

Adjacency Lists

> Array Adj of |V| lists, one per vertex

Undirected Graph

Lecture 13, 2.04.2025

Adjacency Lists

> Array Adj of |V| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Undirected Graph

Lecture 13, 2.04.2025

Adjacency Lists

> Array Adj of |V| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Undirected Graph Adjacency list Adj

Lecture 13, 2.04.2025

Adjacency Lists

> Array Adj of |V| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Directed Graph

Lecture 13, 2.04.2025

Adjacency Lists

> Array Adj of |V| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Directed Graph Adjacency list Adj

Lecture 13, 2.04.2025

Adjacency Lists

> Array Adj of |V| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

> In pseudocode, we will denote the array as attribute G.Adj, so we
will see notation such as G.Adj[u].

Directed Graph Adjacency list Adj

Lecture 13, 2.04.2025

Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Undirected Graph

Lecture 13, 2.04.2025

Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Undirected Graph Adjacency matrix
1 2 3 4 5
1{o1 001
21101 1 1
3/0 1 01 0
410 1 1 0 1
5/1 1.0 1 0

Lecture 13, 2.04.2025

Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Lecture 13, 2.04.2025

Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Directed Graph Adjacency matrix
123456
1{fo1 0100
2000010
30000 11
4/0 1000 0
5[looo0o 100
6(0 00001

Lecture 13, 2.04.2025

Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space Space

Lecture 13, 2.04.2025

Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = O(V + E) Space

Lecture 13, 2.04.2025

Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = ©(V + E) Space = ©(V?)

Lecture 13, 2.04.2025

Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = ©(V + E) Space = ©(V?)

Time: to list all vertices adjacent Time: to list all vertices adjacent
to u: to u:

Lecture 13, 2.04.2025

Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = ©(V + E) Space = ©(V?)

Time: to list all vertices adjacent Time: to list all vertices adjacent
to u: ©(degree(u)) to u:

Lecture 13, 2.04.2025

Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = ©(V + E) Space = ©(V?)

Time: to list all vertices adjacent Time: to list all vertices adjacent
to u: ©(degree(u)) to u: O(V)

Lecture 13, 2.04.2025

Comparison of adjacency list and adjacency matrix

Adjacency list

Space = O(V + E)

Time: to list all vertices adjacent
to u: ©(degree(u))

Time: to determine whether
(u,v) € E:

Lecture 13, 2.04.2025

Adjacency matrix

Space = ©(V?)

Time: to list all vertices adjacent
to u: ©(V)

Time: to determine whether
(u,v) € E:

Comparison of adjacency list and adjacency matrix

Adjacency list

Space = O(V + E)

Time: to list all vertices adjacent
to u: ©(degree(u))

Time: to determine whether
(u,v) € E: O(degree(u))

Lecture 13, 2.04.2025

Adjacency matrix

Space = ©(V?)

Time: to list all vertices adjacent
to u: ©(V)

Time: to determine whether
(u,v) € E:

Comparison of adjacency list and adjacency matrix

Adjacency list

Space = O(V + E)

Time: to list all vertices adjacent
to u: ©(degree(u))

Time: to determine whether
(u,v) € E: O(degree(u))

Lecture 13, 2.04.2025

Adjacency matrix

Space = ©(V?)

Time: to list all vertices adjacent
to u: ©(V)

Time: to determine whether
(u,v) € E: ©(1)

Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = O(V + E) Space = ©(V?)

Time: to list all vertices adjacent Time: to list all vertices adjacent
to u: ©(degree(u)) to u: ©(V)

Time: to determine whether Time: to determine whether
(u,v) € E: O(degree(u)) (u,v) € E: ©(1)

We can extend both representations to include other attributes such as
edge weights

Lecture 13, 2.04.2025

TRAVERSING/SEARCHING A GRAPH

Lecture 13, 2.04.2025

Breadth-First Search

Definition

INPUT: Graph G = (V/, E), either directed or undirected and
source vertex s € V

OUTPUT: v.d = distance (smallest number of edges) from s to v,
forallve V

Lecture 13, 2.04.2025

Breadth-First Search

Definition

INPUT: Graph G = (V/, E), either directed or undirected and
source vertex s € V

OUTPUT: v.d = distance (smallest number of edges) from s to v,
forallve V

Idea:
> Send a wave out from s
> First hits all vertices 1 edge from s

> From there, hits all vertices 2 edges from s ...

Lecture 13, 2.04.2025

Example of Breadth-first search

Queue Q = s

Lecture 13, 2.04.2025

Example of Breadth-first search

Queue Q = a,c

Lecture 13, 2.04.2025

Example of Breadth-first search

Queue Q = ¢, d

Lecture 13, 2.04.2025

Example of Breadth-first search

Queue Q = d,f

Lecture 13, 2.04.2025

Example of Breadth-first search

Queue Q = f,b

Lecture 13, 2.04.2025

Example of Breadth-first search

Queue Q = b,e,g,h

Lecture 13, 2.04.2025

Example of Breadth-first search

Queue Q = e,g,h

Lecture 13, 2.04.2025

Example of Breadth-first search

Queue Q = g,h

Lecture 13, 2.04.2025

Example of Breadth-first search

Queue Q = h

Lecture 13, 2.04.2025

Example of Breadth-first search

Queue Q = nil

Lecture 13, 2.04.2025

BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Lecture 13, 2.04.2025

BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = a,c

Lecture 13, 2.04.2025

BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = ¢, d

Lecture 13, 2.04.2025

BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q =d,f

Lecture 13, 2.04.2025

BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q =f,b

Lecture 13, 2.04.2025

BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = b,e,g,h

Lecture 13, 2.04.2025

BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = e,g,h

Lecture 13, 2.04.2025

BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = g,h

Lecture 13, 2.04.2025

BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = h

Lecture 13, 2.04.2025

BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = nil

Lecture 13, 2.04.2025

Informal Idea of correctness (formal proof in book):

Lecture 13, 2.04.2025

Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Lecture 13, 2.04.2025

Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis:

Lecture 13, 2.04.2025

Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)

Lecture 13, 2.04.2025

Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)

> O(V) because each vertex enqueued at most once

Lecture 13, 2.04.2025

Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)
» O(V) because each vertex enqueued at most once

» O(E) because every vertex dequeued at most once and we examine
(u, v) only when u is dequeued. Therefore, every edge examined at
most once if directed and at most twice if undirected

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Lecture 13, 2.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Lecture 13, 2.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = ¢,d

Lecture 13, 2.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = d,f

Lecture 13, 2.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = f,b

Lecture 13, 2.04.2025

Final notes on BFS

> BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = b,e,g,h

Lecture 13, 2.04.2025

Final notes on BFS

> BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = e,g,h

Lecture 13, 2.04.2025

Final notes on BFS

> BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = g,h

Lecture 13, 2.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = h

Lecture 13, 2.04.2025

Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = nil

Lecture 13, 2.04.2025

Depth-First Search

Definition
INPUT: Graph G = (V, E), either directed or undirected

OUTPUT: 2 timestamps on each vertex: v.d = discovery time and
v.f = finishing time

Lecture 13, 2.04.2025

Depth-First Search

Definition

INPUT: Graph G = (V, E), either directed or undirected

OUTPUT: 2 timestamps on each vertex: v.d = discovery time and
v.f = finishing time

Idea:
> Methodically explore every edge
> Start over from different vertices as necessary

> As soon as we discover a vertex explore from it,

» Unlike BFS, which explores vertices that are close to a source
first

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

time = 3

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

3/4 56 —/-

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

- /-
c

3/4 56 —/-

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/— 8/— /=
b / f?/ S /
2/7
9/10
f
3/4 5/6 —/-
time = 10

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/— 8/11 —/—
b e
2/7
9/10
f
3/4 5/6 —/-
time = 11

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 —/—

2/7
9/10

3/4 5/6 —/-

time = 12

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/—

2/7
9/10

3/4 5/6 —/-

time = 13

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/—

2/7
9/10

3/4 5/6 14/—

time = 14

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/—

2/7
9/10

3/4 5/6 14/15

time = 15

Lecture 13, 2.04.2025

Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/16

2/7
9/10

3/4 5/6 14/15

time = 16

Lecture 13, 2.04.2025

Pseudocode of DFS

DFS(G)
for eachu € G.V
u.color = WHITE
time = 0
for eachu € G.V
if u.color == WHITE
DFS-VIsSIT(G, u)

Lecture 13, 2.04.2025

DFS-VISIT(G, u)
time = time + 1
u.d = time
u.color = GRAY
for each v € G.Adj[u]
if v.color == WHITE
DFS-VisIT(v)
u.color = BLACK
time = time + 1
u.f = time

// discover u
// explore (u,v)

// finish u

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 3

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 4

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time =5

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 6

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time =7

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 8

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 9

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/— 8/— —/—
3 / @/ S /
2/7
9/10
f
3/4 5/6 —/-
time = 10

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/— /11 —/—
b e
2/7
9/10
f
3/4 5/6 —/—
time = 11

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 —/—
e
2/7

9/10

f
3/4 5/6 —/-
time = 12

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/—
e
2/7

9/10

f
3/4 5/6 —/—
time = 13

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/—
e
2/7

9/10

f
3/4 5/6 14/—
time = 14

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/—
e
2/7
9/10
3/4 5/6 14/15
time = 15

Lecture 13, 2.04.2025

DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/16
2/7
9/10
3/4 5/6 14/15
time = 16

Lecture 13, 2.04.2025

DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Lecture 13, 2.04.2025

DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Runtime analysis:

Lecture 13, 2.04.2025

DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Runtime analysis: ©(V + E)
> ©(V) because each vertex is discovered once

> O(E) because each edge is examined once if directed graph and
twice if undirected graph.

Lecture 13, 2.04.2025

Classification of edges

3/4 5/6

Lecture 13, 2.04.2025

Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)

3/4 5/6

Lecture 13, 2.04.2025

Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)

Back edge: (u,v) where u is a descendant of v

3/4 5/6

Lecture 13, 2.04.2025

Classification of edges

Tree ecoe In the depth-first forest, found by exploring (u, v)
Back edge: (u,v) where u is a descendant of v

Forward edge: (u,v) where v is a descendant of u, but not a tree edge

3/4 5/6

Lecture 13, 2.04.2025

Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)
Back edge: (u,v) where u is a descendant of v
Forward edge: (u,v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

3/4 5/6

Lecture 13, 2.04.2025

Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)
Back edge: (u,v) where u is a descendant of v

Forward edge: (u,v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or
cross-edges. Why?

Lecture 13, 2.04.2025

