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(An algorithmic paradigm not a way of “programming”)

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° + 3 — /167

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° 4+ 3 — /167
What is 2° 4+ 3 — /167

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° 4+ 3 — /167
What is 2° 4+ 3 — /167

What is 25 + 3 — /167

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167

What is 2° +3 — /167

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 2° + 3 — /167
What is 25 + 3 — /167

What is 25 + 3 — /167

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING

(An algorithmic paradigm not a way of “programming”)

What is 2% 4+ 3 — /167
What is 25 +3 — /167
What is 2° + 3 — /167
What is 2° +3 — /167
What is 25 + 3 — /167
What is 2° + 3 — /167

What is 2° +3 — /167

Lecture 13, 2.04.2025



Dynamic Programming (DP)

Main idea:
» Remember calculations already made

> Saves enormous amounts of computation
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Dynamic Programming (DP)

Main idea:
» Remember calculations already made

> Saves enormous amounts of computation

Allows to solve many optimization problems
> Always at least one question in google code jam needs DP
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Key elements in designing a DP-algorithm

Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve
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Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally
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Optimal substructure

> Show that a solution to a problem consists of making a choice,
which leaves one or several subproblems to solve and the optimal
solution solves the subproblems optimally

Overlapping subproblems

> A naive recursive algorithm may revisit the same (sub)problem over
and over.

» Top-down with memoization
Solve recursively but store each result in a table

» Bottom-up
Sort the subproblems and solve the smaller ones first; that way, when solving a

subproblem, have already solved the smaller subproblems we need



ROD CUTTING
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Definition
INPUT: A length n and table of prices p;, for i =1,...,n

OUTPUT: The maximum revenue obtainable for rods whose lengths
sum up to n, computed as the sum of the prices for the
individual rods.
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Definition
INPUT: A length n and table of prices p;, for i =1,...,n

OUTPUT: The maximum revenue obtainable for rods whose lengths
sum up to n, computed as the sum of the prices for the
individual rods.
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Dynamic programming algorithm

Choice:
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Dynamic programming algorithm

Choice: where to make the leftmost cut
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Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the
remaining piece in an optimal way
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Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the
remaining piece in an optimal way

Hence, if we let r(n) be the optimal revenue from a rod of length n, we
can express r(n) recursively as follows

r(n):{o ifn=0

maxi<i<p {pi + r(n—1i)} otherwise if n>1
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Dynamic programming algorithm

Choice: where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the
remaining piece in an optimal way

Hence, if we let r(n) be the optimal revenue from a rod of length n, we
can express r(n) recursively as follows

r(n):{o ifn=0

maxi<i<p {pi + r(n—1i)} otherwise if n>1

Optimal substructure: Solve recurrence using top-down with memoization
or bottom-up which yields an algorithm that runs in time ©(n?).
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Parenthesization | Cost computation | Cost

Ax((BxC)xD)|20-1-10+20-10-100+ 50-20-100 | 120, 200
(Ax(BxC)xD|20-1-10+50-20-10+50-10-100 | 60,200
(AxB)x(CxD)| 50-20-1+1-10-100+50-1-100 | 7,000

MATRIX-CHAIN MULTIPLICATION
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Matrix-chain multiplication

Definition
INPUT: A chain (A;, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;

OUTPUT: A full parenthesization of the product A;A>--- A, in a
way that minimizes the number of scalar multiplications
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Matrix-chain multiplication

Definition
INPUT: A chain (A;, Ay, ..., A,) of n matrices, where for
i=1,2,...,n, matrix A; has dimension p;_1 X p;

OUTPUT: A full parenthesization of the product A;A>--- A, in a
way that minimizes the number of scalar multiplications

Example: Optimal parenthesization of A4 3 X B35 x GCs5 is
(As3 X (B3s x Gs2))

and requires 3-5-2 + 4 -3 -2 multiplications.
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Dynamic programming algorithm

Choice:
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Dynamic programming algorithm

Choice: where to make the outermost parenthesis

(Ar- - A)(Akgr - An)

Lecture 13, 2.04.2025



Dynamic programming algorithm

Choice: where to make the outermost parenthesis

(Ar- - A)(Akgr - An)

Optimal substructure:
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Dynamic programming algorithm

Choice: where to make the outermost parenthesis

(Ar- - A)(Akgr - An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way
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Dynamic programming algorithm

Choice: where to make the outermost parenthesis

(Ar- - A)(Akgr - An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i, j] be the optimal value for chain multiplication of
matrices A;, ..., Aj, we can express m(i, /] recursively as follows

i j] = {0 ifi=j

minj<k<j {mli, k] + mlk + 1,1 + pi—1pxp;} otherwise if i < j
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Choice: where to make the outermost parenthesis

(Ar--- A)(Akgr - An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i, j] be the optimal value for chain multiplication of
matrices A;, ..., A;, we can express mli, j] recursively as follows

mlij] = {0 ifi=

minj<k<j {mli, k] + mlk + 1,j] + pi—1pxp;} otherwise if i < j

Overlapping subproblems: Solve recurrence using top-down with
memoization or bottom-up which yields an algorithm that runs in time

o(n?).



LONGEST COMMON SUBSEQUENCE
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Longest common subsequence

Definition
INPUT: 2 sequences, X = (x1,...,Xm) and Y = (y1,...,¥n)-

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn’t have to be consecutive, but it has to be in
order
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Longest common subsequence

Definition
INPUT: 2 sequences, X = (x1,...,Xm) and Y = (y1,...,¥n)-

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn’t have to be consecutive, but it has to be in
order

Example:

heroically

scholar]y
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Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

BABDBA

DACBCBA
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Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words
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Dynamic programming comes to the rescue
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Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA
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Dynamic programming algorithm

Let Xj = (x1,x2,...,X;) and Yj = (y1,y2,...,¥))

Choice:
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Dynamic programming algorithm

Let Xj = (x1,x2,...,X;) and Yj = (y1,y2,...,¥))

Choice:
If x; = y; then either

> OPT "matches” x; with y; and remaining OPT is in (Xj_1, Yj_1);
> OPT isin (Xj_1,Y)); or
> OPT isin (X, Yi_1)
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Dynamic programming algorithm

Let Xj = (x1,x2,...,X;) and Yj = (y1,y2,...,¥))

Choice:
If x; = y; then either

> OPT "matches” x; with y; and remaining OPT is in (Xj_1, Yj_1);
> OPT isin (Xj_1,Y)); or
> OPT isin (X, Yi_1)
If x; # y; then either
> OPT isin (Xj_1,Y)); or
> OPT isin (X, Yj_1)
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Dynamic programming algorithm

Let Xj = (x1,x2,...,X;) and Yj = (y1,y2,...,¥))

Choice:
If x; = y; then either

> OPT "matches” x; with y; and remaining OPT is in (Xj_1, Yj_1);
> OPT isin (Xj_1,Y)); or
> OPT isin (X, Yi_1)
If x; # y; then either
> OPT isin (Xj_1,Y)); or
> OPT isin (X, Yj_1)

We proved that we can assume that OPT “matches” x; with y; if they
are equal so we can simplify the first case
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Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

C[i’j] =
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Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

ifi=0o0rj=0
cli.j] =
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Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]
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Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
cli,j]= ifi,j>0and x =y
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Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
clijl=<%cli-1,j—-1]+1 if i,j>0and x; =y;
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Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
clijl=<%cli-1,j—-1]+1 if i,j>0and x; =y;
if i,j>0and x; # y;
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Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
clijl=<%cli-1,j—-1]+1 if i,j>0and x; =y;
max(c[i —1,/],cli,j—1]) ifi,j>0and x; #y;
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Recursive formulation

Define c[i, j] = length of LCS of X; and Y;. We want c[m, n]

0 ifi=0orj=0
clijl=<%cli-1,j—-1]+1 if i,j>0and x; =y;
max(c[i —1,/],cli,j—1]) ifi,j>0and x; #y;

> Naive implementation solves same problems many many times

> Solve with Bottom-Up or Top-Down with Memoization in time
O(m - n).
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Pseudocode and analysis

LCS-LENGTH(X, Y, m,n)
leth[1..m,1..n]and c[0..m,o0..n] be new tables
fori = 1tom

cli,0] =0
for j =0ton
cl0,j1=0
fori = 1tom
forj = 1ton
if x; == y;
cli,jl=cli-1,j=1]+1
bli. j] ="\"
elseifc[i — 1, j] > cli,j —1]
cli,jl=cli—1.j]

bli.j] = 1"
else cfi. j] = cli.j 1]
bli.j] = <

return ¢ and b
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Pseudocode and analysis

LCS-LENGTH(X, Y, m,n)
leth[1..m,1..n]and c[0..m,o0..n] be new tables
fori = 1tom

cli,0] =0
for j =0ton
cl0,j1=0
fori = 1tom
forj = 1ton
if x; == y;
cli,jl=cli-1,j=1]+1
bli. jl ="\
elseifc[i — 1, j] > cli,j —1]
cli,jl=cli—1.j]

bli.j] = 1"
else cfi. j] = cli.j 1]
bli.j] = <

return ¢ and b

> Time dominated by instructions inside the two nested loops which
execute m - n times
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Pseudocode and analysis

LCS-LENGTH(X, Y, m,n)
leth[1..m,1..n]and c[0..m,o0..n] be new tables
fori = 1tom

cli,0] =0
for j =0ton
cl0,j1=0
fori = 1tom
forj = 1ton
ifx,- ==Y
cli,jl=cli-1,j=1]+1
bli. jl ="\
elseifc[i — 1, j] > cli,j —1]
cli,jl=cli—1.j]

bli.j] = 1"
else cfi. j] = cli.j 1]
bli.j] = <

return ¢ and b

> Time dominated by instructions inside the two nested loops which
execute m - n times

> Total time is ©(m - n).
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OPTIMAL BINARY SEARCH TREES
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Searching on Facebook

More popular than
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Optimal binary search trees

> Given sequence K = (ki, ko, ..., k) of n distinct keys, sorted
(k1 <k <. < k,,).

> Want to build a binary search tree from the keys
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Optimal binary search trees

> Given sequence K = (ki, ko, ..., k) of n distinct keys, sorted
(k1 <k <. < k,,).

> Want to build a binary search tree from the keys
> For k;, have probability p; that a search is for k;

» Want BST with minimum expected search cost
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Optimal binary search trees

> Given sequence K = (ki, ko, ..., k) of n distinct keys, sorted
(kl <k <. < k,,).

> Want to build a binary search tree from the keys
> For k;, have probability p; that a search is for k;
» Want BST with minimum expected search cost

> Actual cost = # of items examined

For key k;, cost = depth -,—(k,-) + 1, where depth(k;) denotes the depth of
ki in BST T
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Optimal binary search trees

> Given sequence K = (ki, ko, ..., k) of n distinct keys, sorted
(kl <k <. < k,,).

> Want to build a binary search tree from the keys

> For k;, have probability p; that a search is for k;

» Want BST with minimum expected search cost

> Actual cost = # of items examined
For key k;, cost = depth(k;) + 1, where depthr(k;) denotes the depth of
ki in BST T

n

E[search cost in T] = Z(depth-r(k,-) +1)p;
i=1

=1+ depthr(k)-p;
i=1
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4

5
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.05

3

i depthy(k;) depthr(k)- p;i
1 1 .25
2 0 0
3 2 1
4 1 2
5 2 .6
1.15



i1 2 3 45 i depthy(k) depthy(K)- p;
pi| 25 2 .05 3 1 1 25

2 0 0

3 2

4 1

5 2

1.15

Therefore, E[search cost] = 2.15
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i |1 2

3

4

5

pi| 25 2
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.05

3

i depthy(k;) depthy(ki)- p;
1 1 .25
2 0 0
3 3 .15
4 2 4
5 1 3

1.10



i |1 2 3 4 5

p,.|_25 2 05 2 3 i depthr(ki) depthr(k;)- pi
1 25

0 0

3 15

2

1

A4
3
1.10

A W N

Therefore, E[search cost] = 2.10, which
turns out to be optimal
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> Optimal BST might not have smallest height

> Optimal BST might not have highest-probability key at root
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> Optimal BST might not have smallest height

> Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
> Construct each n-node BST
> For each put in keys

> Then compute expected search cost
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> Optimal BST might not have smallest height
» Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
> Construct each n-node BST
> For each put in keys
> Then compute expected search cost

> But there are exponentially many trees

2
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> Optimal BST might not have smallest height
» Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
> Construct each n-node BST
> For each put in keys
> Then compute expected search cost

> But there are exponentially many trees

2

DP comes to the rescue :)
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

ONONONONONONONONO)
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

®
@& G
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

()
() () ©

E[search cost] = ps + 2ps + 3p2 + 4p1 + 4p3 + 2ps + 3p7 + 3pg + 4ps
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

E[search cost] = ps
+ p1 + p2 + p3 + pg + E[search cost left subtree]
+ pe + p7 + pg + Py + E[search cost right subtree]
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Optimal substructure

A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

Build tree of nodes k; < ki11 < -+ < kj_1 < kj by selecting best root r:

opt. tree of
ket .- . kj

E[search cost] = p,
+pi + -+ + pr—1 + E[search cost left subtree]
+pry1 + - -+ + pj + E[search cost right subtree]
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Recursive formulation

> Let e[i, ] = expected search cost of optimal BST of k;...k;
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Recursive formulation

> Let e[i, ] = expected search cost of optimal BST of k;...k;

e[iaj] = {
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Recursive formulation

> Let e[i, ] = expected search cost of optimal BST of k;...k;

. ifi=j+1
e[:,J]={ /
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Recursive formulation

> Let e[i, ] = expected search cost of optimal BST of k;...k;

. 0 ifi=j+1
e[:,J]={ !
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Recursive formulation

> Let e[i, ] = expected search cost of optimal BST of k;...k;

. 0 ifi=j+1
e[l,J]:{ . J
if i <j
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Recursive formulation

> Let e[i, ] = expected search cost of optimal BST of k;...k;

i 0 ifi=j+1
’7 = . . - j e . .
A7 minizosi{elir = 1+ elr + 11+ Y pe} i <)
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Recursive formulation

> Let e[i, ] = expected search cost of optimal BST of k;...k;

i 0 ifi=j+1
’7 = . . - j e . .
I\ minicosslelior — 1+ elr + 11+ Y pe} i i <)

> Solve using bottom-up or top-down with memoization
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+zj£:ipg} i<

0 1 2 3 4 5

S 1B~ W N =
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+zj£:ipg} i<

1 2 3 4 5

S 1B~ W N =
o
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+zj£:ipg} i<

e 1 2 3 4 5
1 .25

2 0

3 0

4 0

5 0

6 0
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+zj£:ipg} i<

e 1 2 3 4 5
1 .25

2 0

3 0

4 0

5 0

6 0
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 .25

2 0

3 0 .05

4 0

5 0

6 0
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 .25

2 0

3 0 .05

4 0 2

5 0

6 0
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 .25

2 0

3 0 .05

4 0 2

5 0 3
6 0
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 25 .65

2 0

3 0 .05

4 0 2

5 0 3
6 0
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 25 .65

2 0 2 3

3 0 .05

4 0 2

5 0 3
6 0
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 25 .65

2 0 2 3

3 0 .05 3

4 0 2

5 0 3
6 0
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 25 .65

2 0 2 3

3 0 .05 3

4 0 2 7
5 0 3
6 0
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 25 .65

2 0 .

3 0 .05 3

4 0 2 7
5 0 3
6 0
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipg} i<

e 1 2 3 4 5
1 25 65 .

2 0 2 3 .15

3 0 .05 3

4 0 2 7
5 0 3
6 0
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipz} i<

e 1 2 3 4 5
1 25 65 .

2 0 2 3 .15

3 0 05 3 .85
4 0 2 7
5 0 3
6 0
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Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipz} i<

e 1 2 3 4 5
1 25 65 8 125

2 0 .75

3 0 .05 3 .85
4 0 2 7
5 0 3
6 0

Lecture 13, 2.04.2025



Bottom-up example

i1 2 3 4
o _ ifi=j+1
pi | 25 2 05 2 3 e[”‘,]_{min,—s,sj{e[i,r—1]+e[r+1,j]+ZJ£:ipz} i<

e 1 2 3 4 5
1 25 65 8 125

2 0 3 .75 135
3 0 .05 3 85
4 0 2 7
5 0 3
6 0
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Bottom-up example

ifi=j+1

i1 2 3 4
pi | 25 2 .05 3 e[i’j]:{min,—s,sj{e[i,r—1]+e[r+1,j]+Zi:ipz} ifi<)
e 1 2 3 4 5
1 25 65 8 125 21
2 0 2 3 75 135
3 0 .05 3 .85
4 0 2 7
5 0 3
6 0
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Bottom-up example

ifi=j+1

i1 2 3 4
pi | 25 2 .05 3 e[i’j]:{min,—s,sj{e[i,r—1]+e[r+1,j]+Zi:ipz} i<
e 1 2 3 4 5
1 25 65 8 125 21
2 0 2 3 75 1.35
3 0 .05 3 .85
4 0 2 7
5 0 3
6 0

Optimal BST has expected search cost 2.1
Can save decisions to reconstruct tree
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Pseudocode of bottom-up

OPTIMAL-BST(p.q,n)
lete[l..n+1,0..n],w[l..n+41,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

elii—1=0
wli.i—1]=0
for/ =1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = o0
wli.j] = wli.j~ 1+ p;
forr =itoj
t=eli,r—1]+elr+1,j]+wli,/]
ifr <eli. ]
eli,jl=1
rootli, j] =r
return e and root

eli, j] records the expected search cost of optimal BST of k;,..., k;

r[i, j] records the best root in optimal BST of k;,..., k;

wli, j] records S_, p
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Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1]1=0
for/ =1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli.j] = wli.j =1+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ifr <eli, j]
eli,jl=1
rooti, j] = r
return e and root
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Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1]=0
for/ =1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli.j] = wli.j =1+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ifr <eli. ]
eli,jl=1
rooti, j] = r
return e and root

> Runtime dominated by three nestled loops: total time is ©(n?)
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Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1]=0
for/ = 1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli.j] = wli.j =1+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ifr < eli. ]
eli,jl=1
rooti, j] = r
return e and root

> Runtime dominated by three nestled loops: total time is ©(n?)

> Alternatively, ©(n?) cells to fill in
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Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1]=0
for/ = 1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli, j] = wli,j =11+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ifr < eli. ]
eli.jl=1
rooti, j] = r
return e and root

> Runtime dominated by three nestled loops: total time is ©(n?)

> Alternatively, ©(n?) cells to fill in
Most cells take ©(n) time to fill in
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Runtime Analysis

OPTIMAL-BST(p.q.n)
lete[l..n+1,0..n],w[l..n+1,0..n],and root[1..n,1..n] be new tables
fori = 1ton+1

eli.i—11=0
wli,i—1]=0
for/ = 1ton
fori = l1ton—1+1
j=i+l-1
eli,j] = oo
wli, j] = wli,j =11+ p;
forr =itoj
t=eli,r—1]+elr+1,j] +wli,/]
ift <eli, ]
eli.jl=1
rooti, j] = r
return e and root

> Runtime dominated by three nestled loops: total time is ©(n?)

> Alternatively, ©(n?) cells to fill in
Most cells take ©(n) time to fill in
Hence, total time is ©(n%)

Lecture 13, 2.04.2025



Summary of Dynamic Programming

> |dentify choices and optimal substructure

> Write optimal solution recursively as a function of smaller
subproblems

> Use top-down with memoization or bottom-up to solve the
recursion efficiently (without repeatedly solving the same subproblems)

» Do a lot of exercises!
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A graph G = (V, E) consists of
> a vertex set V
> an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

Undirected Graph Directed Graph
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A graph G = (V, E) consists of
> a vertex set V
> an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

Undirected Graph Directed Graph

How to represent a graph in the computer?
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Adjacency Lists

> Array Adj of |V| lists, one per vertex

Undirected Graph
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Adjacency Lists

> Array Adj of |V| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Undirected Graph
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Adjacency Lists

> Array Adj of |V| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Undirected Graph Adjacency list Adj
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Adjacency Lists

> Array Adj of |V| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Directed Graph
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Adjacency Lists

> Array Adj of |V| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

Directed Graph Adjacency list Adj
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Adjacency Lists

> Array Adj of |V| lists, one per vertex

> Vertex u's list has all vertices v such that (u, v) € E (works for both
undirected and directed graphs)

> In pseudocode, we will denote the array as attribute G.Adj, so we
will see notation such as G.Adj[u].

Directed Graph Adjacency list Adj
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Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Undirected Graph

Lecture 13, 2.04.2025



Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Undirected Graph Adjacency matrix
1 2 3 4 5
1{o1 001
21101 1 1
3/0 1 01 0
410 1 1 0 1
5/1 1.0 1 0
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Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise
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Adjacency matrix

> A |V| x |V| matrix A= (a;;) where

2y — {1 if(i,j) € E

0 otherwise

Directed Graph Adjacency matrix
123456
1{fo1 0100
2000010
30000 11
4/0 1000 0
5[looo0o 100
6(0 00001
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Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space Space
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Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = O(V + E) Space
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Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = ©(V + E) Space = ©(V?)
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Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = ©(V + E) Space = ©(V?)

Time: to list all vertices adjacent Time: to list all vertices adjacent
to u: to u:
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Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = ©(V + E) Space = ©(V?)

Time: to list all vertices adjacent Time: to list all vertices adjacent
to u: ©(degree(u)) to u:
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Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = ©(V + E) Space = ©(V?)

Time: to list all vertices adjacent Time: to list all vertices adjacent
to u: ©(degree(u)) to u: O(V)
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Comparison of adjacency list and adjacency matrix

Adjacency list

Space = O(V + E)

Time: to list all vertices adjacent
to u: ©(degree(u))

Time: to determine whether
(u,v) € E:
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Adjacency matrix

Space = ©(V?)

Time: to list all vertices adjacent
to u: ©(V)

Time: to determine whether
(u,v) € E:



Comparison of adjacency list and adjacency matrix

Adjacency list

Space = O(V + E)

Time: to list all vertices adjacent
to u: ©(degree(u))

Time: to determine whether
(u,v) € E: O(degree(u))
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Adjacency matrix

Space = ©(V?)

Time: to list all vertices adjacent
to u: ©(V)

Time: to determine whether
(u,v) € E:



Comparison of adjacency list and adjacency matrix

Adjacency list

Space = O(V + E)

Time: to list all vertices adjacent
to u: ©(degree(u))

Time: to determine whether
(u,v) € E: O(degree(u))
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Adjacency matrix

Space = ©(V?)

Time: to list all vertices adjacent
to u: ©(V)

Time: to determine whether
(u,v) € E: ©(1)



Comparison of adjacency list and adjacency matrix

Adjacency list Adjacency matrix

Space = O(V + E) Space = ©(V?)

Time: to list all vertices adjacent Time: to list all vertices adjacent
to u: ©(degree(u)) to u: ©(V)

Time: to determine whether Time: to determine whether
(u,v) € E: O(degree(u)) (u,v) € E: ©(1)

We can extend both representations to include other attributes such as
edge weights
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TRAVERSING/SEARCHING A GRAPH
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Breadth-First Search

Definition

INPUT: Graph G = (V/, E), either directed or undirected and
source vertex s € V

OUTPUT: v.d = distance (smallest number of edges) from s to v,
forallve V
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Breadth-First Search

Definition

INPUT: Graph G = (V/, E), either directed or undirected and
source vertex s € V

OUTPUT: v.d = distance (smallest number of edges) from s to v,
forallve V

Idea:
> Send a wave out from s
> First hits all vertices 1 edge from s

> From there, hits all vertices 2 edges from s ...
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Example of Breadth-first search

Queue Q = s
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Example of Breadth-first search

Queue Q = a,c
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Example of Breadth-first search

Queue Q = ¢, d
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Example of Breadth-first search

Queue Q = d,f
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Example of Breadth-first search

Queue Q = f,b
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Example of Breadth-first search

Queue Q = b,e,g,h
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Example of Breadth-first search

Queue Q = e,g,h
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Example of Breadth-first search

Queue Q = g,h
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Example of Breadth-first search

Queue Q = h
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Example of Breadth-first search

Queue Q = nil
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BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)
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BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = a,c
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BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = ¢, d
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BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q =d,f
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BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q =f,b
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BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

0=490
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = b,e,g,h
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BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = e,g,h
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BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = g,h
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BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = h
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BFS(V,E.s)
Pseudocode of Breadth-first search [Ralsibiead
s.d=0

Q=90
ENQUEUE(Q, 5)
while Q # 0
u = DEQUEUE(Q)
for each v € G.Adj[u]
if v.d == 00
vd =u.d+1
ENQUEUE(Q, v)

Queue Q = nil
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Informal Idea of correctness (formal proof in book):
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Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen
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Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis:
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Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)
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Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)

> O(V) because each vertex enqueued at most once
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Informal Idea of correctness (formal proof in book):
> Suppose that v.d is greater than the shortest distance from s to v

> but since algorithm repeatedly considers the vertices closest to the
root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)
» O(V) because each vertex enqueued at most once

» O(E) because every vertex dequeued at most once and we examine
(u, v) only when u is dequeued. Therefore, every edge examined at
most once if directed and at most twice if undirected



Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex
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Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex
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Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = ¢,d
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Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = d,f
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Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = f,b
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Final notes on BFS

> BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = b,e,g,h
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Final notes on BFS

> BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = e,g,h
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Final notes on BFS

> BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = g,h
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Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = h
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Final notes on BFS

» BFS may not reach all the vertices

> We can save the shortest path tree by keeping track of the edge
that discovered the vertex

Queue Q = nil

Lecture 13, 2.04.2025



Depth-First Search

Definition
INPUT: Graph G = (V, E), either directed or undirected

OUTPUT: 2 timestamps on each vertex: v.d = discovery time and
v.f = finishing time

Lecture 13, 2.04.2025



Depth-First Search

Definition

INPUT: Graph G = (V, E), either directed or undirected

OUTPUT: 2 timestamps on each vertex: v.d = discovery time and
v.f = finishing time

Idea:
> Methodically explore every edge
> Start over from different vertices as necessary

> As soon as we discover a vertex explore from it,

» Unlike BFS, which explores vertices that are close to a source
first
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

time = 3
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/—

(=

3/4 56 —/-
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

- /-
c

3/4 56 —/-
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/— 8/— /=
b / f?/ S /
2/7
9/10
f
3/4 5/6 —/-
time = 10
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/— 8/11 —/—
b e
2/7
9/10
f
3/4 5/6 —/-
time = 11
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 —/—

2/7
9/10

3/4 5/6 —/-

time = 12
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/—

2/7
9/10

3/4 5/6 —/-

time = 13
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/—

2/7
9/10

3/4 5/6 14/—

time = 14
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/—

2/7
9/10

3/4 5/6 14/15

time = 15
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Example of DFS

As DFS progresses, every vertex has a color:
» WHITE = undiscovered
> GRAY = discovered, but not finished (not done exploring from it)

» BLACK = finished (have found everything reachable from it)

1/12 8/11 13/16

2/7
9/10

3/4 5/6 14/15

time = 16

Lecture 13, 2.04.2025



Pseudocode of DFS

DFS(G)
for eachu € G.V
u.color = WHITE
time = 0
for eachu € G.V
if u.color == WHITE
DFS-VIsSIT(G, u)

Lecture 13, 2.04.2025

DFS-VISIT(G, u)
time = time + 1
u.d = time
u.color = GRAY
for each v € G.Adj[u]
if v.color == WHITE
DFS-VisIT(v)
u.color = BLACK
time = time + 1
u.f = time

// discover u
// explore (u,v)

// finish u




DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 3
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 4
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time =5
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 6
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time =7
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 8
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1
u.f = time // finish u

time = 9
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/— 8/— —/—
3 / @/ S /
2/7
9/10
f
3/4 5/6 —/-
time = 10
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/— /11 —/—
b e
2/7
9/10
f
3/4 5/6 —/—
time = 11
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 —/—
e
2/7

9/10

f
3/4 5/6 —/-
time = 12
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/—
e
2/7

9/10

f
3/4 5/6 —/—
time = 13
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/—
e
2/7

9/10

f
3/4 5/6 14/—
time = 14
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/—
e
2/7
9/10
3/4 5/6 14/15
time = 15
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DFS-VISIT(G, u)

Pseudocode of DFS time = time + 1

u.d = time
u.color = GRAY // discover u
for each v € G.Adj[u] // explore (u,v)

if v.color == WHITE
DFS-VIsIT(v)
u.color = BLACK
time = time + 1

u.f = time // finish u
1/12 8/11 13/16
2/7
9/10
3/4 5/6 14/15
time = 16
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DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.
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DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Runtime analysis:
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DFS forms a depth-first forest comprised of > 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Runtime analysis: ©(V + E)
> ©(V) because each vertex is discovered once

> O(E) because each edge is examined once if directed graph and
twice if undirected graph.
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Classification of edges

3/4 5/6
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Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)

3/4 5/6
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Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)

Back edge: (u,v) where u is a descendant of v

3/4 5/6
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Classification of edges

Tree ecoe In the depth-first forest, found by exploring (u, v)
Back edge: (u,v) where u is a descendant of v

Forward edge: (u,v) where v is a descendant of u, but not a tree edge

3/4 5/6
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Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)
Back edge: (u,v) where u is a descendant of v
Forward edge: (u,v) where v is a descendant of u, but not a tree edge

Cross edge: any other edge

3/4 5/6
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Classification of edges

Tree edger In the depth-first forest, found by exploring (u, v)
Back edge: (u,v) where u is a descendant of v

Forward edge: (u,v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or
cross-edges. Why?
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