
Algorithms: Dynamic Programming
(Optimal Binary Search Trees) and Graphs

Ola Svensson

School of Computer and Communication Sciences

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
What is 25 + 3 −

√
16?

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
What is 25 + 3 −

√
16?

What is 25 + 3 −
√

16?

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
What is 25 + 3 −

√
16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
What is 25 + 3 −

√
16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
What is 25 + 3 −

√
16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

Lecture 13, 2.04.2025



DYNAMIC PROGRAMMING
(An algorithmic paradigm not a way of “programming”)

What is 25 + 3 −
√

16?
What is 25 + 3 −

√
16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

What is 25 + 3 −
√

16?

Lecture 13, 2.04.2025



Dynamic Programming (DP)

Main idea:
▶ Remember calculations already made
▶ Saves enormous amounts of computation

Allows to solve many optimization problems
▶ Always at least one question in google code jam needs DP
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Key elements in designing a DP-algorithm

Optimal substructure
▶ Show that a solution to a problem consists of making a choice,

which leaves one or several subproblems to solve

and the optimal
solution solves the subproblems optimally

Overlapping subproblems
▶ A naive recursive algorithm may revisit the same (sub)problem over

and over.
▶ Top-down with memoization

Solve recursively but store each result in a table
▶ Bottom-up

Sort the subproblems and solve the smaller ones first; that way, when solving a
subproblem, have already solved the smaller subproblems we need
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ROD CUTTING
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Rod cutting

Definition
INPUT: A length n and table of prices pi , for i = 1, . . . , n

OUTPUT: The maximum revenue obtainable for rods whose lengths
sum up to n, computed as the sum of the prices for the
individual rods.
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Dynamic programming algorithm

Choice:

where to make the leftmost cut

Optimal substructure: to obtain an optimal solution, we need to cut the
remaining piece in an optimal way

Hence, if we let r(n) be the optimal revenue from a rod of length n, we
can express r(n) recursively as follows

r(n) =
{

0 if n = 0
max1≤i≤n {pi + r(n − i)} otherwise if n ≥ 1

Optimal substructure: Solve recurrence using top-down with memoization
or bottom-up which yields an algorithm that runs in time Θ(n2).
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MATRIX-CHAIN MULTIPLICATION
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Matrix-chain multiplication

Definition
INPUT: A chain ⟨A1, A2, . . . , An⟩ of n matrices, where for

i = 1, 2, . . . , n, matrix Ai has dimension pi−1 × pi

OUTPUT: A full parenthesization of the product A1A2 · · · An in a
way that minimizes the number of scalar multiplications

Example: Optimal parenthesization of A4,3 × B3,5 × C5,2 is

(A4,3 × (B3,5 × C5,2))

and requires 3 · 5 · 2 + 4 · 3 · 2 multiplications.
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Dynamic programming algorithm
Choice:

where to make the outermost parenthesis

(A1 · · · Ak)(Ak+1 · · · An)

Optimal substructure: to obtain an optimal solution, we need to
parenthesize the two remaining expressions in an optimal way

Hence, if we let m[i , j] be the optimal value for chain multiplication of
matrices Ai , . . . , Aj , we can express m[i , j] recursively as follows

m[i , j] =
{

0 if i = j
mini≤k<j {m[i , k] + m[k + 1, j] + pi−1pkpj} otherwise if i < j

Overlapping subproblems: Solve recurrence using top-down with
memoization or bottom-up which yields an algorithm that runs in time
Θ(n3).
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Longest common subsequence

Definition
INPUT: 2 sequences, X = ⟨x1, . . . , xm⟩ and Y = ⟨y1, . . . , yn⟩.

OUTPUT: A subsequence common to both whose length is longest.
A subsequence doesn’t have to be consecutive, but it has to be in
order

Example:

h e r o i c a l l y

s c h o l a r l y
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Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice?

If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice?

If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice?

If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming comes to the rescue

Start at the end of both words and move to the left step-by-step

Choice? If the same, pick letter to be in the subsequence

If not the same, optimal subsequence can be obtained by moving a step
to the left in one of the words

BABDBA

DACBCBA

Lecture 13, 2.04.2025



Dynamic programming algorithm

Let Xi = ⟨x1, x2, . . . , xi ⟩ and Yj = ⟨y1, y2, . . . , yj ⟩

Choice:

If xi = yj then either
▶ OPT “matches” xi with yj and remaining OPT is in (Xi−1, Yj−1);
▶ OPT is in (Xi−1, Yj); or
▶ OPT is in (Xi , Yj−1)

If xi , yj then either
▶ OPT is in (Xi−1, Yj); or
▶ OPT is in (Xi , Yj−1)

We proved that we can assume that OPT “matches” xi with yj if they
are equal so we can simplify the first case
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Recursive formulation

Define c[i , j] = length of LCS of Xi and Yj . We want c[m, n]

c[i , j] =



0 if i = 0 or j = 0
c[i − 1, j − 1] + 1 if i , j > 0 and xi = yj

max(c[i − 1, j], c[i , j − 1]) if i , j > 0 and xi , yj

▶ Naive implementation solves same problems many many times
▶ Solve with Bottom-Up or Top-Down with Memoization in time

O(m · n).
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Pseudocode and analysis

▶ Time dominated by instructions inside the two nested loops which
execute m · n times

▶ Total time is Θ(m · n).
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OPTIMAL BINARY SEARCH TREES
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Searching on Facebook

More popular than
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Optimal binary search trees
▶ Given sequence K = ⟨k1, k2, . . . , kn⟩ of n distinct keys, sorted

(k1 < k2 < · · · < kn).
▶ Want to build a binary search tree from the keys

▶ For ki , have probability pi that a search is for ki

▶ Want BST with minimum expected search cost
▶ Actual cost = # of items examined

For key ki , cost = depthT (ki) + 1, where depthT (ki ) denotes the depth of
ki in BST T

E[search cost in T ] =
n∑

i=1
(depthT (ki) + 1)pi

= 1 +
n∑

i=1
depthT (ki) · pi
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Example
i 1 2 3 4 5
pi .25 .2 .05 .2 .3

k2

k1 k4

k3 k5

i depthT (ki) depthT (ki) · pi

1 1 .25
2 0 0
3 2 .1
4 1 .2
5 2 .6

1.15

Therefore, E[search cost] = 2.15
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Example
i 1 2 3 4 5
pi .25 .2 .05 .2 .3

k2

k1 k5

k4

k3

i depthT (ki) depthT (ki) · pi

1 1 .25
2 0 0
3 3 .15
4 2 .4
5 1 .3

1.10

Therefore, E[search cost] = 2.10, which
turns out to be optimal
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Observations

▶ Optimal BST might not have smallest height
▶ Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
▶ Construct each n-node BST
▶ For each put in keys
▶ Then compute expected search cost
▶ But there are exponentially many trees

DP comes to the rescue :)

Lecture 13, 2.04.2025



Observations

▶ Optimal BST might not have smallest height
▶ Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
▶ Construct each n-node BST
▶ For each put in keys
▶ Then compute expected search cost

▶ But there are exponentially many trees

DP comes to the rescue :)

Lecture 13, 2.04.2025



Observations

▶ Optimal BST might not have smallest height
▶ Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
▶ Construct each n-node BST
▶ For each put in keys
▶ Then compute expected search cost
▶ But there are exponentially many trees

DP comes to the rescue :)

Lecture 13, 2.04.2025



Observations

▶ Optimal BST might not have smallest height
▶ Optimal BST might not have highest-probability key at root

Build by exhaustive checking?
▶ Construct each n-node BST
▶ For each put in keys
▶ Then compute expected search cost
▶ But there are exponentially many trees

DP comes to the rescue :)

Lecture 13, 2.04.2025



Optimal substructure
A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

k1 k2 k3 k4 k5 k6 k7 k8 k9
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After picking root solution to subtrees must be optimal

k5
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After picking root solution to subtrees must be optimal

k5
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Optimal substructure
A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

k5

k4 k8

k9k2 k7

k1 k3 k6

E[search cost] = p5 + 2p4 + 3p2 + 4p1 + 4p3 + 2p8 + 3p7 + 3p9 + 4p6
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Optimal substructure
A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

k5

k4 k8

k9k2 k7

k1 k3 k6

E[search cost] = p5

+ p1 + p2 + p3 + p4 + E[search cost left subtree]
+ p6 + p7 + p8 + p9 + E[search cost right subtree]
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Optimal substructure
A binary search tree can be built by first picking the root and then
building the subtrees recursively

After picking root solution to subtrees must be optimal

Build tree of nodes ki < ki+1 < · · · < kj−1 < kj by selecting best root r :

kr

opt. tree of
ki . . . kr−1

opt. tree of
kr+1 . . . kj

E[search cost] = pr

+pi + · · · + pr−1 + E[search cost left subtree]

+pr+1 + · · · + pj + E[search cost right subtree]
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Recursive formulation

▶ Let e[i , j] = expected search cost of optimal BST of ki . . . kj

e[i , j] =
{

0 if i = j + 1
mini≤r≤j{e[i , r − 1] + e[r + 1, j] +

∑j
ℓ=i pℓ} if i ≤ j

▶ Solve using bottom-up or top-down with memoization
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Bottom-up example

i 1 2 3 4 5
pi .25 .2 .05 .2 .3 e[i, j] =

{
0 if i = j + 1
mini≤r≤j {e[i, r − 1] + e[r + 1, j] +

∑j
ℓ=i

pℓ} if i ≤ j

e 0 1 2 3 4 5
1

0 .25 .65 .8 1.25 2.1

2

0 .2 .3 .75 1.35

3

0 .05 .3 .85

4

0 .2 .7

5

0 .3

6

0

Optimal BST has expected search cost 2.1
Can save decisions to reconstruct tree
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Pseudocode of bottom-up

e[i , j] records the expected search cost of optimal BST of ki , . . . , kj

r [i , j] records the best root in optimal BST of ki , . . . , kj

w [i , j] records
∑j

ℓ=i pℓ
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Runtime Analysis

▶ Runtime dominated by three nestled loops: total time is Θ(n3)
▶ Alternatively, Θ(n2) cells to fill in

Most cells take Θ(n) time to fill in
Hence, total time is Θ(n3)
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Summary of Dynamic Programming

▶ Identify choices and optimal substructure

▶ Write optimal solution recursively as a function of smaller
subproblems

▶ Use top-down with memoization or bottom-up to solve the
recursion efficiently (without repeatedly solving the same subproblems)

▶ Do a lot of exercises!
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GRAPHS

Lecture 13, 2.04.2025



Graphs
A graph G = (V , E ) consists of
▶ a vertex set V
▶ an edge set E that contain (ordered) pairs of vertices

A graph can be undirected, directed, vertex-weighted, edge-weighted, etc.

Undirected Graph

1 2

3

5 4

Directed Graph

1 2 3

4 5 6

How to represent a graph in the computer?
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How to represent a graph in the computer?
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Adjacency Lists

▶ Array Adj of |V | lists, one per vertex

▶ Vertex u’s list has all vertices v such that (u, v) ∈ E (works for both
undirected and directed graphs)

▶ In pseudocode, we will denote the array as attribute G .Adj , so we
will see notation such as G .Adj[u].
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5 4
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Adjacency matrix

▶ A |V | × |V | matrix A = (aij) where

aij =
{

1 if(i , j) ∈ E
0 otherwise

Undirected Graph
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Adjacency matrix

▶ A |V | × |V | matrix A = (aij) where

aij =
{

1 if(i , j) ∈ E
0 otherwise

Directed Graph
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Comparison of adjacency list and adjacency matrix

Adjacency list

Space

= Θ(V + E )

Time: to list all vertices adjacent
to u: Θ(degree(u))

Time: to determine whether
(u, v) ∈ E : O(degree(u))

Adjacency matrix

Space

= Θ(V 2)

Time: to list all vertices adjacent
to u: Θ(V )

Time: to determine whether
(u, v) ∈ E : Θ(1)

We can extend both representations to include other attributes such as
edge weights
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Comparison of adjacency list and adjacency matrix
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TRAVERSING/SEARCHING A GRAPH
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Breadth-First Search

Definition
INPUT: Graph G = (V , E ), either directed or undirected and

source vertex s ∈ V

OUTPUT: v .d = distance (smallest number of edges) from s to v ,
for all v ∈ V

Idea:
▶ Send a wave out from s
▶ First hits all vertices 1 edge from s
▶ From there, hits all vertices 2 edges from s ...

Lecture 13, 2.04.2025



Breadth-First Search

Definition
INPUT: Graph G = (V , E ), either directed or undirected and

source vertex s ∈ V

OUTPUT: v .d = distance (smallest number of edges) from s to v ,
for all v ∈ V

Idea:
▶ Send a wave out from s
▶ First hits all vertices 1 edge from s
▶ From there, hits all vertices 2 edges from s ...

Lecture 13, 2.04.2025



Example of Breadth-first search
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Queue Q = s
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Example of Breadth-first search
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Example of Breadth-first search
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Example of Breadth-first search
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Example of Breadth-first search
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Pseudocode of Breadth-first search

s
0

a
∞

c
∞

d
∞

f
∞

b
∞

e
∞

g
∞

h
∞

Queue Q = s

Lecture 13, 2.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
∞

f
∞

b
∞

e
∞

g
∞

h
∞

Queue Q = a,c

Lecture 13, 2.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
2

f
∞

b
∞

e
∞

g
∞

h
∞

Queue Q = c,d

Lecture 13, 2.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
∞

e
∞

g
∞

h
∞

Queue Q = d,f

Lecture 13, 2.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
∞

g
∞

h
∞

Queue Q = f,b

Lecture 13, 2.04.2025



Pseudocode of Breadth-first search

s
0

a
1

c
1

d
2

f
2

b
3

e
3

g
3

h
3

Queue Q = b,e,g,h

Lecture 13, 2.04.2025



Pseudocode of Breadth-first search
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Pseudocode of Breadth-first search
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Analysis

Informal Idea of correctness (formal proof in book):

▶ Suppose that v .d is greater than the shortest distance from s to v
▶ but since algorithm repeatedly considers the vertices closest to the

root (by adding them to the queue) this cannot happen

Runtime analysis: O(V+E)
▶ O(V ) because each vertex enqueued at most once
▶ O(E ) because every vertex dequeued at most once and we examine

(u, v) only when u is dequeued. Therefore, every edge examined at
most once if directed and at most twice if undirected
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Final notes on BFS

▶ BFS may not reach all the vertices
▶ We can save the shortest path tree by keeping track of the edge

that discovered the vertex

s
0

a
∞

c
∞

d
∞

f
∞

b ∞

e
∞

g
∞

h
∞

Queue Q = s
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Final notes on BFS
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Depth-First Search

Definition
INPUT: Graph G = (V , E ), either directed or undirected

OUTPUT: 2 timestamps on each vertex: v .d = discovery time and
v .f = finishing time

Idea:
▶ Methodically explore every edge
▶ Start over from different vertices as necessary

▶ As soon as we discover a vertex explore from it,
▶ Unlike BFS, which explores vertices that are close to a source

first
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Example of DFS
As DFS progresses, every vertex has a color:
▶ WHITE = undiscovered
▶ GRAY = discovered, but not finished (not done exploring from it)

▶ BLACK = finished (have found everything reachable from it)

a
−/−

b
1/−

c
−/−

d −/−

e
−/−

f
−/−

g
−/−

h
−/−

time = 1
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Example of DFS
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Analysis

DFS forms a depth-first forest comprised of ≥ 1 depth-first trees. Each
tree is made of edges (u, v) such that u is gray and v is white when
(u, v) is explored.

Runtime analysis: Θ(V + E )
▶ Θ(V ) because each vertex is discovered once
▶ Θ(E ) because each edge is examined once if directed graph and

twice if undirected graph.
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Classification of edges

Tree edge: In the depth-first forest, found by exploring (u, v)
Back edge: (u, v) where u is a descendant of v

Forward edge: (u, v) where v is a descendant of u, but not a tree edge
Cross edge: any other edge

In DFS of an undirected graph we get only tree and back edges, no forward or
cross-edges. Why?

a
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d 9/10

e
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f
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g
5/6

h
3/4
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